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PREFACE

This monograph brings together research results on dynamic buckling from
reports and technical papers produced during the past two decades by the authors
and their co-workers at SRI International (formerly Stanford Research Institute).
Work on the monograph was supported by the Defense Nuclear Agency (DNA),
under the technical direction of Mr. D.J. Kohler in the Shock Physics Directorate,
Acrospace Systems Division (SPAS). DNA also sponsored much of the original
research, either directly or through the Air i“orce Weapons Laboratory. Air Force
sponsorship of original research was also provided by the Space and Missile Systems
Office (now the Ballistic Missile Office).

The need to design structures to resist static buckling, particularly structures
made from high strength alloys, has been recognized for more than a century.
Buckling from dynamic loads has received serious attention only since World War
I1, and only within the last two decades has a basic understanding been developed
for buckling under explosive and impact loads. This development followed closely
the introduction of high-speed electronic and photographic instrumentation to
observe such buckling, which can occur in a fraction of a millisecond. The mono-
graph makes liberal use of experimental resuits in cstablishing the physical basis for
dynamic pulse buckling theory.

We focus on buckling from intense loads, well above static buckling loads, but
of short enough duration that the buckle amplitudes are small and cause no serious
damage. A common example is a nail, which is driven by very high loads but does
not buckle because the hammer and nail are in contact for only a short time. In
large structures, the intense loads cause the modes of dynamic buckling to be of
much higher order than in static buckling. Practical applications in which dynamic
buckling plays an important role are evolving with the advancing technology of high
speed, light weight military and civilian vehicles and with the renewed emphasis on
safety in transportation and industry.

As in many technologies, early motivation for dynamic buckling research
stemmed from military needs, such as in the design of aircraft landing struts and
the design of ballistic missiles to resist launch and attack loads. Launch and reentry
vehicles were found to buckle in uniquely high-order wrinkling patternc under X-
ray blowoff (surface impulse) and blast loads. The new feature in ballistic missile
skin buckling was that the wrinkle patteins had to be determined in addition to the
critical loads.
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Dynamic wrinkling also occurs in thin structures under impact, as in automo-
biie or railway crashes. An idealized form of such wrinkling is the crushup of a
cylindrical shell under axial impact. It is often desirable that the wrinkles be tightly
packed, in order to absorb eneigy and protect passengers sitting farther back in the
vehicie. This takes unique advantage of ithe natural tendency toward high-order
wrinkling in dynamic buckling.

Industrial safcty often requires that facilities survive accidental explosions
without release of toxic gases. A current example is found in nuclear reactors,
where safety receives great emphasis. Within an explosive environment, high pres-
sure and impact conditions are feit by many structural elements, and dynamic buck-
ling is an important mode of energy absorption. One example is the above-core
structure support columns, whose dynamic buckling protecte the reactor cover from
impact by the lower internal structure.

Dynamic buckling is an important design consideration in implosion devices,
in which metal cylindrical or conical shells are collapsed inwardly by explosives.
These devices are used for rapid closing of pipes and for shaped-charge weapons
and oil well perforators. To work effectively, shaped-charge liners should collapse
without buckling.

New problems in dynamic buckling will undoubtedly appear as space struc-
tures are built, because these structures are very large and very thin. Any slight
impact will lead to local dynamic buckling because the wave transit time through
the structure is long compared with the time for buckles to form.

An importani new phenomenon of pulse buckling is that the mode of buck-
ling is determined by the load, so the perspective for analysis is reversed from that
in static buckling. In static analysis, the buckling mode is known (the fundamental
mode) and the maximum safe load is to be determined. In pulse buckling, the load
amplitude is specified and dictates the buckling modes. The design quantity to be
determined is the maximum safe duration of the load. This inverted viewpoint is
needed in order to recognize and analyze dynamic pulse buckling. As pulse buck-
ling becomes familiar to engineers, buckling that could otherwise cause serious
problems will become a standard response feature to be considered in the dasign of
thinner and lighter weight structures.

The monograph presents a systematic development of dynamic pulse buck-
ling, from simple elastic buckling of bars to the most recent developments in biax-

ial plastic flow buckling of shelis. Emphasis is on developing an understanding of

the buckling processes and on making available practical theory that’can be used for
estimating buckling strengths of structural slements (bars, plates, rings, shells)
under a variety of pulse loadings. Familiarity with static buckling in these elementa
is assumed, but most derivations are made from fundamental ~rinciples so that the
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monograph can be used as a graduate level textbook. Each chapter is written to be
understood independently so that the practicing engineer can go directly to the
theory and experiment most appropriate to a specific problem. For student use,
Chapters 1 and 2 should be read first because they describe in more detail funda-
mental ideas that are used throughout the remaining text.

The authors are indebted to the staff of the Pouiter Laboratory at SRI Interna- )

tional for contributions to both theory and experiment. Those who worked directly
on the research are D.L. Anderson, B.P. Bain, J.H. Busma, J.D. Colton, L.J. Dary,
JKK. Gran, G.R. Greenfield, R.E. Herbert, T.C. Kennedy, C.M. Romander,
P. Schwindt, G.R. Sliter, H. Vaughan, and W. Zietzke. Manuscripts for papers,
reports, and this text were prepared with the assistance of M. Adams and J. Berry
and their staff, and N. Hall, V.A. Jercha, D.M. Phillips, K. Reeds, and N.J. Smith.

The research was made possible by the guidance and support of G.R. Abra-
hamson, Director of Poulter Laboratory and Vice President of SRI Internationai,
J.N. Goodier of Stanford University, and M.C. Atkins of Defense Nuclear Agency.
Dr. Abrahamson performed the first experiments on plastic flow buckling in 1959
and with J.N. Goodier developed a theoretical explanation of the observed buckies.
Section 3.2 is their paper reproduced with little change. In 1966 Guodier made
another pioneering contribution to the theory by discovering the directional
moment. Dr. Atkins was the technical monitor on this early research while he was
with the Air Force Weapons Laboratory and continued his encouragement end sup-
port while at Avco Corporation and DNA. Dr. Atkins suggested that this mono-
graph be written and with D.J. Kohler saw us through its preparation.
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1. INTRODUCTION

1.1 FORMS OF DYNAMIC BUCKLING

Dynamic stability of structures is a very broad subject that includes not only
dynamic buckling from transient anc vibratory loads, but also interaction of struc-
tures with other media, such as in aircraft flutter, and interaction with active control
systems that have their own dynamic characteristics. A review of many forms of
dynamic stability of structures is available in the proceedings of an international
conference on the subject held at Northwestern University in 1965.1

This monograph is concerned with buckling from prescribed dynamic loads
acting on structural elements (bars, plates, rings, shelis). To more precisely define
the scope and areas of practical application, it is useful to further distinguish among
several types of dynamic buckling based on the physical phenomena of the buckling
processes. The first distinction is between buckling from osciilatory loads and buck-
ling from traasient loads consisting of a single pulse characterized by its amplitude,
shape, and duration. The first type we call vibration buckling and the second we
call pulse buckliing.

In vibration buckling, the amplitudes of vibrat:on caused by an oscillating load
become unacceptably large at critical combinations of load amplitude, load fre-
quency, and structure damping. A simple example is a column supporting an oscil-
lating axial load as shown in Figure 1.1a. Inevitable imperfections in the column
give rise to bending moments that excite lateral motion. The column vibrates
laterally at large amplitude when the loading frequency is twice the natural bending
frequency of the column: each time the column bows out to one side or the other,
the axial loading force reaches its maximum and produces bending moments. The
term vibration buckling describes the similarity to vibration resonance. The
difference is that in vibration resonance the load is in the same direction as the
motion (lateral to the column in the example) and excites the motion directly as an
applied force in the eyuation of motion. Simple resonance occurs when the lateral
loading trequency coincides with the natural frequency of vibration. By contrast, in
vibration buckling the bending moment induced by the axial force introduces the
for: as a parameter multiplying the displacement in the equation of motion. A
mc nematical description of vibration buckling is therefore: dymamic stability of
vibrations induced by oscillating parametric locding. This type of resonance is there-
fore called paramerric rescnance. An extensive treatment of this subject is given in
a book by W. W. Bolotin.?2 .
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FIGURE 1.1 VIBRATION BUCKLING AND PULSE BUCKLING

In pulse buckling, the structure deforms to an unacceptably large amplitude as
the result of transient response to the applied load. The deformation can be per-
manent, as a result of plastic response or snap through to a large-deformation post-
buckled state, or the structure can return to its.undeformed state. A simple
exaraple is a long column with a suddenly applied axial load many times greater
than the static Euler load, as shown in Figure 1.1b. Motion grows exponentially in
all modes with wavelengths longer than the Euler wavelength for the given load.
The critical modes are those with greatest total growth during the time of load
applicetion. The critical condition for buckling is an unacceptably large deformation
or stress. The column can survive a large axial load before reaching this condition
if the load duration is short enough. Under an intense, short duration load, the
column buckles into a very high-order mode as shown in Figure 1.1b.

This type of buckling might also be called response buckling because it is
similar in form and analytical approach to simple dynamic response from prescribed
loading histories. Again, the difference from simple dynamic response is that the
load appears as a parameter multiplying the displacement in the equations of
motion; therefore, pulse buckling falls under the mathematical definition: dvramic
response of structural systems induced by time-varying parametric loading.

The final distinction to be made relates to the modes in which the pulse buck-
ling takes place. In this monograph, we focus mainly on response in high-order
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modes as in the example in Figure 1.1b. In all the problems to be addressed, the
load amplitude is higher than the static buckling load; in most of the problems, the
amplitude is much higher than the static buckling load. We use the term puise
buckling because it tends to emphasize tne high amplitude, short duration loading
of primary concern here. We distinguish between high and low order buckling
because the extensive published work on low-order buckling is beyond the scope of
the monograph. The extent of this published work, however, emphasizes the
importance of low-order dynamic buckling in conveniional structural design, in
which dynamic loads often do not differ widely from static buckling loads.

Three problems in which a great deal of low-order dynamic buckling work has
been done are (1) buckling of columns, for example, in aircraft landing struts,
(2) buckling of arches and spherical caps, and (3) buckling of cylindrical shells
under axisl load. The last two problems have in common that the structures are
extremely sensitive to initial imperfections in shape. As a result, critical dynamic
buckling loads of long duration (e.g., step loads) can be smaller in ampiitude than
the corresponding slowly applied load.? Problems in which this feature of dynamic
buckling is important arc not addressed in. this monograph. The fundamentals of
the low-order column buckling problem are included in the monograph, but the
many elaborations available in the literature are not. Emphasis is on high-order
buckling because it relates more clesely to high-order buckling of plates, rings, and
shells, the subject that has received the most attention of the authors. Dynamic
buckling of cylindrical shells under axial impact is treated in considerable detail for
both elastic and plastic axial waves, but always with emphasis on high-order
response.

1.2 EXAMPLES OF DYNAMIC PULSE BUCKLING

A few examples illustrate the features of dynamic pulse buckling. The
descriptions here are qualitative, to give the nature and scope of dynamic pulse
buckling. Detailed interpretations and analyses are given in the following chapters.
The simplest example is again a long column as in Figure 1.1b. In practice, the
large amplitude load is typically applied by impact at one end. Figure 1.2 gives a
sequence of nigh speed photographs of a thin strip buckling under axial impact at
its lower end. The impact produced an elastic compression wave that traveled up
the strip at velocity 0.2 inch/us (5 mm/us), starting at the lower end at t = 0. As
is typical in such impact buckling, the wave front moved through a distance much
greater than the buckle wavelength before any visible buckling took place. At the
timc of first perceptible buckling, near the impacted end at t = 24 us, the wave
front had traveled 5 inches (127 mm), about twice the length of the portion of the
strip in the photographs. Thus, each buckle sees essentially a constant, suddenly
applied axial thrust. The buckles therefore remain fixed in position and nierely
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FIGURE 1.2 WAVES FORMING IN A 6061-T6 ALUMINUM STRIP

Time is measured from instant 40,000 psi (276 MPa)
compressive wave reflects from clamp support,

grow in amplitude with time. The amplitude of buckles near the impacted end is
larger than the amplitude of buckles farther up the strip because of unavoidable
eccentricity of the impact and because the duration of axial loading is longest at the
end. In this example and those that follow, the buckling morion was allowed to
proceed well beyond any threshold of acceptable motion in order to see the buck-
ling process clearly.

Similar high speed photographs of buckling in a thin cylindrical shell under
axial impact at its lower end are given in Figure 1.3. The shell is very thin
(radius-to-thickness ratio a/h = 550), so the buckling process is similar to that in
the thin strip. The amplitude of the axial stress wave is 1.5 times the classical elas-
tic axial buckling stress of the shell. The large-amplitude buckles at late time are in
the familiar diamond pattern, but the buckle wavelengths are much shorter than
those of the static large deflection post-buckled swte. This difference is illustrated
in Figure 1.4, which compares post-test photographs of a shell buckled dynamically
as in Figure 1.3 and an identical shell buckled by a slowly applied load in a testing
machine. (In all the shells, a clamped end condition was provided by a thick inter-
nal ring and a thin exterior ring whose upper edge can be seen in the photographs;
the narrow buckle in the dynamically buckled shell in Figure 1.4 is just above this
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FIGURE 1.3 HIGH SPEED PHOTOGRAPHS OF BUCKLING IN A THIN CYLINDRICAL
SHELL UNDFR AXIAL IMPACT

Time is from initial impact at rigid end ring; a/h = 650, cr/as = 1.5.
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FIGURE 1.4 COMPARISON OF STATIC AND DYNAMIC POST-BUCKLED PATTERNS

clamped i»oundary.) Observe that most of the buckling in Figure 1.3 was elastic;
only one or two buckles near the impacted end are permanently formed by plastic
hinges, as shown in Figure 1.4. The axial wavelength of the dynamic buckles is
close to the classical buckle wavelength. A theoretical treatment of this buckling,

based on a dynamic counterpart to the classical theory, agrees closely with these
experimental observations.

Dynamic buckling of shells under radial pulse loads is illustrated in Figure 1.5.
The very thin shell in Figure 1.5a (a/h = 480) was loaded by an impulsive radial
pressure over one side of the shell. The resulting hoop stress as the shell moved
inward produced a destabilizing thrust similar to that of the axial compression wave
in the thin strip in Figure 1.2. Becaase the peak value of the hoop stress was ciose
to the value of the compressive stress in the strip, the wavelength of buckles is also
similar. This is shown in Figure 1.5b, in which a buckled sirip from the experi-
ments of Figure 1.2 is placed near a group of buckles in the sheill in Figure 1.5a
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The mode number of buckling is very high; the wavelengths in Figure 1.5a
correspond t0 mode numbers of n = 50 to 100 buckles arcund the circumference.
Part of the reponse analysis for pulse buckling is to determine these "preferred”
modes of buckling.

The wall of the shell in Figure 1.5¢ was projected inward by a radial impuilse

~ uniform around the circumference. It is much thicker (a/h = 19) than the wall of

the shell in Figure 1.5a, so the initial radial velocity required to produce buckling
was much higher. The hoop strain was severa! percent, well into the plastic range,
which results in another form of pulse buckling called dynamic plastic flow buck-
ling. In this simple form it is similar to the elastic examples just discussed, with
the elastic modulus replaced by the plastic tangent modulus. The permanent wrin-
kles in the elastic examples in Figures 1.4 and 1.5 were formed by late-time plastic
hinges following elastic buckling. In plastic flow buckling the buckles form while
the material throughout the entire wall thickness is fiowing plastically from hoop
compression. Resistance to buckling therefore comes from the plastic tangent
medulus rather than from the elastic modults. The tangent modulus in metals is
typically about 100 times smaller than the elastic modulus. Buckle wavelengths,
which are proportional to the square root of the modulus, are therefore about 10
times shorter (in comparison to wall thickness) than in elastic buckling. This can
be seen by comparing the edge view of the buckling thin strip in Figure 1.2 with
the end view of the buckled thick shell in Figure 1.5c. A similar situation occurs in
thick bars under high velocity axial impact.

Figure 1.5d illustrates the effect of changing the pulse duration of radial pres-
sure loading. All three shells have a/h = 100 and were clamped ai their ends. The
shell on the left was loaded by an impulsive pressure as in Figures 1.5a and b and is
buckled into a very high-order mode (n = 45). The shell on the right was loaded
by a long duration blast wave and is buckled on its loaded side into waveiengths
corresponding to n = 7 waves arcund the complete circumference. This is close to
the n = 6 pattern for static radial pressure uniform around the shell. The shell in
the center was loaded by a blast wave of intermediate duration and is buckled into
an n = 13 wave pattern. The changing wave pattern is the result of the increase in
peak pressure (and hence hoop stress) required to cause buckling as the pulse dura-
tion is reduced. This illustrates again that the mode number of buckling is an
important response feature that must be determined in dynamic pulse buckling
analysis.

Figure 1.6 shows the symmetric form of buckling in thick-walled tubes under
high velocity axial impact. The tubes were 25 mm O.D. with a wall thickness of 2.5
mm (mean radius-to-thickness ratio a/h = 4.5). As in the thick shell under radial
impulse, suckling took place during sustained plastic flow, this time with the unper-
turbed fiow mainly in the axial direction. A naw feature in this flow buckling is
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FIGURE 1.6 AXISYMMETRIC PLASTIC FLOW BUCKLING IN CYLINDRICAL SHELLS
FROM IMPACT AT 342 ft/sec (104 m/s)

Tube at left shows shape before impact.

that there is plastic flow in both in-plane directions (axially and circumferentially)
and that the flow kinematics require that stress states through the wall thickness lie
at different positions on the yield surface. Flow kinematics dictate the direction of
the strain rate vector, and the associated flow rule (the Mises yield function is
assumed) therefore dictates the position of the stress state on the current yield sur-
face. During flow perturbed by buckling motion, these stress states are such that a
bending moment is induced that resists buckling even in the absence of strain har-
dening. This new bending moment is called the directional moment, because it is
the result of the kinematic constraint on the direction of the strain rate vector. A
carefully developed explanation of directicnal moments is given in the text.

Directional moments also occur in plastic flow buckling of intermediate-length
cylindrical shells loaded by radial impuise. These shells are long enough to impose
a kinematic constraint on axial flow (constant through the thickness) but short
enough that there is axial flow and hence a directional moment. For long shells
(Figure 1.5¢) or rings, there is no directional moment because the strain rate vector
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is either fixed in diroction (long sheli, no axiai flow) or there is no axial flow
restraint (ring). In some materials, a third type of bending moment results from an
increase in stress with an increase in strain rate--the viscoplastic moment. The
effects and relative importance of strain hardening (iangent moduius) moments,
directional moments, and viscoplastic moments in various situations are crucial in
the analysis of dynamic plastic flow buckling.
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2. IMPACT BUCKLING OF BARS

2.1 INTRODUCTION

Most of the features unique to dynamic pulse buckling are illustrated in detail
by buckling of bars under axial impact. An important feature that does not occur is
directional moments, because all stresses are axial. Study of buckling in long bars
shows that many high-order modes are excited and that they grow exponentially in
amplitude with time as long as the load is maintained. These are called the duckling
modes. The shape into which the bar deforms depends on the relative amplitude of
growth in the buckling modes and on the bar imperfections that initiate growth. A
plot of relative amplitude versus mode number is called the amplification function.
The most amplified mode i called the preferred mode of dynamic buckling.

Imperfections are treated as either discrete or random. The bar is a con-
venient structural element in wkich to examine the relative importance of these two
imperfection types. Eccentricity at the point of impact provides a discrete imperfec-
tion and associated unique buckled shape. Deviations from perfect straightness
along the length of the bar are treated as random. Experiments on bars are
inexpensive enough that many tests were performed to compare the theoretical dis-
tribution of wavelengths calculated using this assumption with the experimental dis-
tribution observed in a collection of bars. The random imperfection assumption is
found to give a reasonably accurate description of the experimentally observed
results. This demonstration is used to formulate a critical condition for buckling
based on ampiification of random imperfections. In later chapters this same buck-
ling criterion is used for pulse buckling of cylindrical shells from radia! and axial
loads.

The bar is also a convenient structural element in which to examine the
change in buckling patterns and critical load duration as the load amplitude 1s
varied. Experiments were performed on aluminum bars with elastic impact stresses
ranging from 30% to 80% of the yield stress, all with nominally a rectangular pulse
shape. At each value of stress the pulse duration was increased until permanent
buckles were just perceptible. The resulting curve of critical pulse -duration versus
axial stress (actually, a band of overlapping data points from buckled and unbuckled
bars, owing to the random nature of the imperfections) is compared with theoretical
curves for several assumed imperfection amplitudes. These critical curves are sim-
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ple examples that anticipate similar critical curves of peak pressure versus impulse
(given in the next chapter) for cylindrical shells under radial pressure pulses.

In one respect, impact buckling of bars is a more complex problem than buck-
ling of shells under radial pressure. In dynemic buckling under axial load, the load
is communicated to the bar by axial stress waves that move up and down the bar.
For the high-order buckling considered ir this monograph, buckling takes place
during one transit of the compressive wave up the bar. The effect of this moving
wave is not treated explicitly in the theoretical analysis given here, but it is shown
that the amount of lateral buckling motion that takes place during the time to
traverse a buckie wavelength is sma!l compared with the total buckling motion.
Thus, from a practical standpoint the complex problem of tuckle motion as the
wave passes can be neglected.

The effect of moving waves on a simply supported bar buckling in its funda-
mental mode was treated by Sevin.! In this case, buckling takes place as the axial
wave moves up and down the bar many times. Sevin’s approach is similar to that
given here: he neglects motion as the wave traverses the bar and considers only
that the bar is subjected to a load that increases uniformly along its l=ngth in a
series of steps that add to the load with each arrival of the wave at the ends of the
bar. The ends are taken to move toward each other at fixed velocity, as in a testing
machine. His conclusion is the same as that here, namely, that because the motion
during each step is small compared with the total buckling motion, this
simplification is reasonabie.

The final form of pulse buckling demonstrated by bar impact is dynamic plas-
tic flow buckling under very high velocity, short duration impact. This is the sub-
ject of the final section of this chapter and is introduced more completely at that
point.

2.2 ELASTIC BUCKLING OF LONG BARS

This section is concerned mainly with dynamic elastic buckiing of long bars
from axial loads well in excess of the static Euler load of the bar considered as a
simply supported colusan. In fact, in bar impact exneriments of the type given in
Figure 1.2, the bars are so lony that they buckie before any signal is received from
the free end, so that there is no bar length and hence no physical Euler load.
Nevertheless, it is useful to formulate the theoretical problem as though the bar
were a column with supports at both ends because of the familiarity of this formu-
lation and because it allows direct use of a statistical response analysis available
from communication theory. Also, before we consider dynamic pulse buckling of
this bar, it is useful to present the theory of static buckling. This helrs in relating
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the static and dynamic problems and introduces, in terms of long established static
buckliag experimental resuits, the later treatment of discrete and random imperfec-
tions in dynamic buckling. Both the static and dynamic theories are presented
before the dynamic experiments are described in detail so that the experiments can
be better understood.

2.2.1 Equations of Metion

We consider elastic buckling of a simply supported uniform bar under axial
compression, as in Figurs 2.1a. The bar is of length L and supports an axial
compressive force P. Its cross section is uniform with axial distance x, measured
from one end. Deflection y is taken positive downward and is measured from an
unstressed initial deflection y,(x). An element of length dx between two cross sec-
tons taken normal to the original (undeflected) axis of the bar is shown in Figure
2.1b. The shearing force Q and bending moment M acting on the sides of the ele-
ment are taken positive in the directions shown. The inertia force acting on the
element is pA (8%/ 8t?) dx, where p is the density of the bar material, A is the area
of the cross section, and t is time.

The basic equations for the analysis of tar buckling are derived from dynamic
equilibrium of the element in Figure 2.1b and the moment-curvature relation for
the bar. Summing forces in the y direction gives

-—Q-pA%?,-dx +@Q+dQ =0

or

8y |«
oA = G Q.2.1)

Taking moments about point B and neglecting rotary inertia of the element resulis
in

- padY g, dx
M - pATEdSE + (Q + dQ) x

-~ M + dM) +P-5-a;(y+y.,)dx-0
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FIGURE 2.1 BAR NOMENCLATURE AND ELEMENT OF LENGTH

Terms of second order are neglected, reducing this equation to

= .Qy_ — ..9.. }
Q x P ry (v + y,) (2.2.2

If the effecte of shear deformations and shortening of the bar axis are
neglected, the curvature of the bar axis is related to the bending moment by

m%%--m 12.2.3)
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in which E is Young’s modujus and I is the moment of inertia of the bar section,
assumed symmetric about the xy plane (otherwise the bar would twist in addition to
bending). The differential equation for the deflection of the bar axis is found by
differentiating (2.2.2) and then eliminating Q by means of (2.2.1) and M by means
of (2.2.3) :wice differentiated. The result is

o Y a? dy
El + P + y,) + pA = 0 2.24)
ax axt ¥ T Yt pA Gy =

2.2.2 Static Elastic Buckling of a Simply Suppoited Bar

For static buckling, the inertia term is neglected and (2.2.4) becomes

dy,
pdY 4 pdy o _pd¥
dx dx dx

or, substituting k? = P/EJ,

d%y dy d% -

If we consider first a bar with no initial deflection, we ne.d only the general solu-
tion to the homogeneous equation {with y (x) = 0]. This solution is

y = Asinkx + Bcoskx + Cx + D (2.2.6)

For a simply supported bar, the deflection and bending moment are ze:o at the
ends, znd the boundary conditions are therefore

y=§%=0atx=0 and x =L (2.2.7

Applying these to (2.2.6) gives
B=C=D=0, sinkL=20
and therefore

kL = + nor

B T T P S
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where n is an integer. Using the definition of k, this becomes an equation for P.

z
P~ T o2 (2.28)

Thus, with no initial deflection, only discrete values of P give a nontrivial solution,
and the magnitude A of the deflection is undetermined.

Before discussing these solutions further, let us treat the bar having an initial
shape y,(x). The solution for the perfectly straight bar suggests that y,(x) should
be expressed by the Fourier sine series

Yo(x) = 2 a,sin n;rx (2.2.9)
n~=1 d
The coeflicients in this series are found from
2 . nwX
a, = —L—jol Yo(x) sin —:—-dx (2.2.10)

Substitution of (2.2.9) into (2.2.5) gives the following differential equation for the
imperfect bar: :

dy 28y _ . on¥w? . nmx
" + k " Kk {7 8asin = (2.2.11)

To find a particular solution, we take

y, = 3 Apsin 0% (2.2.12)
n=1 L

When this is substitutet into (2.2.11), the coefficients A, are found to be

—k%, —Pa,

Ay = 73 iy 2
k? — n’r¥L P-P,

(2.2.13)

The complete solution is then

= Pa
y = Asinkx + Bcoskx + Cx + D — ¥} ®_ sin 27X (2.2.14)
. n=1 P - Pn L

Since P, and hence k, is arbitrary, application of the boundary conditions (2.2.7)
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gives A = B = C = D = ( and the general solution is simply
z Pa, . nx
y - nz-l P =P, sin = (2.2.15)

From this snlution we see that the deflection becomes arbitrarily large as P
approaches the critical loads P, given by (2.2.8). However, the dynamic solution
given in subsequent sections shows that the motion is unstable for any load greater
than the lowest critical load P,, which, from (2.2.8), is given by

) ,
p, = =E (2.2.16)
L
In the neighborhood of P = P, the first term dominates the deflection. Neglecting

the higher terms, the midspan deflection for P < P, is given approximately by

—Pa.

P F, 217

8 = y(L/D=

Figure 2.2a gives a plot of deflection 8 from (2.2.17) versus end load P. On the
basis of this formula, Southwell’ suggested that the critical load P, could be

P 8sp

—

o 3 / )

J ey =
(a) (b) .

GB-373%-4

FIGURE 2.2 FORCE-DEFLECTION CURVE AND SOUTHWELL PLOT
FOR SMALL DEFLECTION ELASTIC BUCKLING
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extracted from test data by plotting /P versus 8. In this form, (2.2.17) becomes

) 1 _
P P, (5 + a) (2.2.18)

which gives the straight line in Figure 2.2b. The inverse of the slope gives the crit-
ical load P, and the & intercept gives the coetlicient a, as shown.

If the bar is treated as initially perfectly straight but subjected to an ecceniri-
cally placed load, the Southwell procedure can still be used to determine the critical
load. Consider, for example, that the 'vad is displaced from the centroidal axis by
an amount €, equal at both ends. This can be treated as a bar having an initial dis-
placement given by

YolX) = ¢ x # 0,L

-0 x=o0L (22.19)

Substituting this displacement into (2.2.10). the coefficient of the first term in its
Fourier expansion is

a, - 2 (2.2.20)

T

Thus, for P in the neighborhood of P, the Southwell plot is as described previously,
and the & intercept is now 4¢/m. If the bar is considered to have both an initial
shape and some eccentricity, (2.2.18) becomes

4¢

5 + 8|+""‘
w

] (2.2.21)

8 L
P P,

For real columns, in which both a; and € are small and difficuit to measure,
there is therefore no way of telling in a Southwell plot how much of the deflection
is caused by load eccentricity and how much is caused by an initial deflection. In
experiments run near the turn of the century,3~> it was found that the experimental
buckiing deflections could be calculated, on the average, by using values of
‘equivalent eccentricity given by

e = 0.06r%/ ¢ (2.2.22)

where r?/c is the core radius of the cross section, r being the radius of gyration and
¢ being the distance from the elastic axis to the cutermost fiber. For a rectangular
bar of depth h, this gives € = 0.01 h. In long columns, it is reasonable to assume
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that initial imperfections in shape become more important, and these can be
expected to depend on the length of the column. On this basis, Saimon® found
that, although equivalent imperfections from a large collection of experimental
results were scattered by an order of magnitude at any given length, both the aver-
age amplitude of the imperfections and the range of amplitudes increased in propor-
tion to the length of the bars. For the longer columns. almost all imperfections
were in the band

0.0001 < le < 0.001 (2.2.23)

Several authors have proposed that imperfections depend ... on both the core
radius and the column length can be expected to be present. iney suggest that a
conservative estimate for an equivalent deflection including both types of imperfec-
tions can be taken as

- 2 L
a; = 0.1r%/¢c + 750 (2.2.24)

In the dynamic problems discussed in later sections, we will see that the range of
normalized imperfections found in static buckling gives reasonably good agreement
with values observed in dynamic buckling.

2.2.3 Theory of Dynamic Elastic Buckling of a
Simply Supported Bar

The static buckling considered in the preceding sections was concerned with
the steady load that can be safely carried by a column or bar. If, instead, a load is
suddenly applied and then removed, as in hammering .a nail, the maximum load
can far exceed the static buckling load without inducing objectionably large strains
or deflections. On the other hand, oscillatory forces such as from reciprocating or
unbalanced machinery, even while procucing loads smaller than the static buckling
load, can nevertheless produce objectionably large deflections if the frequency of
oscillation bears a critical relation to the natural frequency of the column. Both of
these problems involve dynamic buckling. As discussed in Chapter 1, the impact of
a nail is a pulse buckling problem, whereas a column under an oscillatory load is a
vibration buckling problem. In the remainder of this chapter we will examine several
examples of elastic and plastic pulse buckling of bars.

In the pulse problem, loads can be applied with no appreciable buckling right
vp to and beyond the elastic limit, provided only that they are applied for a short
enough time. Because of this feature in the dynamic problem, rather than asking
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for the maximum load that can be carried, we specify a load and ask for the
response. Knowing how the buckling grows with time, we then determine the max-
imum duration for which the given load can safely be spplied. In Section 3.5 this
procedure will be epplied to more general psoblems in which the load varies con-
tinuously with time.

Consider first a simply supported bar under a compressive load P, uniform
throughout its length as shown in Figure 2.1. The force P may be much larger than
the critical Euler load P,, but for the present, the average compressive stress is
assumed to be within the elastic limit. To kzep the bar from buckling during appli-
cation of the load P, imagine that it is supported all along its length by lateral con-
straining blocks. Then, at time t = 0, the blocks are suddenly removed and buck-
ling motion begins. The motion is governed by Equation (2.2.4), repeated here.

EI I I l l adoo

After dividing through by EI, it is convenient to introduce the parameters
1 clm = (2.2.26)
A b

The first two parameters have already appeared in the static problem. The new
patameter, appearing because of the dynamic inertia term, is the w.ave speed of
longitudinal stress waves in the bar.” When these quantities are used, the equation
of moticn (2.2.25) becomes

ﬂ.g.klazy.g.l-azy-_zpi 7
ax* ox? rc? at? k ax? @222

As in the static problem, the boundary conditions of zero moment and dis-
placement at the ends of the bar give

2 .
y=3L -0 st x=0 amd x-1L (2.2.28)

The solution to (2.2.27) subject to boundary conditions (2.2.28), as in the static

'ln practice, the load is suddenly comraunicated to the bar by an axial stress wave (or waves). Effects

of these waves are small, as will be seen in Section 2.2.8.
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problem, can be expressed by a Fourier sine series in x. Thus, we assume a pro-
duct solution

yo,0 = % qulr) sin ro (2.2.29)
n=l

The initial displacement y,(x) is also expressed in series form by

Yo(x,t) = ¥ A, sin 3%’5 (2.2.30)
nw]
where the coefficients can be found from
Ao= 3 [y sin X gx 2.31)
0

Equations (2.2.29) and (2.2.30) are now substituted into (2.2.27) to give the fol-
lowing equation of motion for the Fourier coefficients q,(t):

44 2,.2) 1 2.2
n'r n o nr

o = A, (2.2.32)

which, upon rearranging to the more standard form, becomes

2.2
+ r’cnir
LZ

Gn

2 2.2
“:’; - k2] Q, = rk%? - “L’; A, (2233

One of the principal points of the theory of dynamic buckling to be discussed
in this volume appears here. The nature of the solutions to Equation (2.2.33)
depends on the sign of the coefficient of q,. If nw/L < K, this coefficient is nega-
tive and the solutions are hyperbolic; if nw/L > k, this coefficient is positive and
the solutions are trigonometric. Thus, if the mode numbers n are large enough,
n > kL/m, the displacements are trigonometric and therefore bounded. However,
over the lower range of mode numbers, n < kL/sr, the hyperbolic solutions grow
exponentially with time and have the potential of greatly amplifying small initial
imperfections. These modes are therefore called the buckling modes.

The mode number n = kL/w, separating the trigonometric and hyperbolic
solutions, gives a wavelength corresponding to the wavelength of static buckling
under the given load P; no matier how long the duration of load application, if
n > kL/# the motion remains bounded, while for any n < kL/#« the motion

i
!
i
i
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diverges. To see more clearly this relation to a static problem, recall first from
Equation (2.2.29) tha: the deflection curve of the bar is a sine wave with n haif-
weves. For n = kL/w, this curve is given by sin kx. One half-wave of this
deflection curve, corresponding to the buckle shape of a simple pinned Euler
column, therefore occupies a distance from the left support given by

kx, = =
or

Xy = w/k (2.2.34)
Using the definition k? = P/EI, this relation gives

wt r*EI
xat

P = (2.2.35)

This is identical to Equation (2.2.16) for the static buckling of an Euler column of
length x,, under the load P.

The dynamic squaticn also demonstrates the statement made in Section 2.2.2
that loads greater than Py = w2El/L? give unstable motion. This follows from the
observation already made that the motion is unstable if the coefficient of q, in
(2.2.33) is negative, that is, if

nx?
-I—..T - k<0 (2.2.36)
Since k? = P/EI is positive, this guantity is most negative for n = 1. Using n = 1
in Equation (2.2.36), the left-hand side is negative for all P > w’lil/‘..2 and the
motion is unstable as previously stated.

For the dynamic problems of present interest here, P > > #2EI/L? and many
modes are unstable. Thus the mode numbers of the buckling modes are very high
and the wavelengths of the buckling are so short that the total length of the bar
becomes relatively unimportant. In fact, in experiments to be described later,
dynamic buckling is produced by impact at one end of the bar and, because of the
finite speed of axial wave propagation, buckling cccurs before any signal is received
from the opposite end. In this problem the total length of the bar has no
significance at sll. We should therefore seek a characteristic length other than the
length of the bar. Because the nature of the motion changes at the static Euler
wavelength x,, = w/k, it is quite natural to use 1/k as the characteristic length in
the x-direction, along the bar. Similarly, it is natural to normalize lateral

et ———— *
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deflections with respect to the radius gyration r of the cross seciion. The ratio
between these lengths is a significant parameter and will be denoted by s:

gl = 1kl - %ll:- - 7\% - (2.2.37)

Thus the wavelength of the buckling varies inversely with the square root of the
strain € due to the compressive load P. This will be discussed more fully later.

To incorporate these lengths into the equation of motion, we introduce the
dimensionless variables

wel | fek= & oS (2.2.38)
r r r
With these variables, Equation (2.2.25) becomes
- W W W 2239

where primes indicate differentiation with respect to f' and dots indicate
differentiation with respect to 7. Boundary conditions (2.2:28) become

sL

wew =0 a £=0 and §=2 == (2.2.40)
and the product form of solution is now expresiseé by |
w(g,7) ~ f‘ 8.(7) sin n_;r_{_ ‘ (2.2.41)
P
Similarly, the initial displacements are
vo® = ¥ a,sin 25K (2.2.42)
n=1
where
2, = %fw.(f) sin 278 g (2.2.43)
A wave number 7 is introduced by |
n =3 2.2.44)
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and finally (2.2.41) and (2.2.42) are substituted into (2.2.39) to give the equations
of motion for the Fourier coefficients g, (7):

Bn + 7°(n? = Dg, = v, (2.2.45)

This equation corresponds to (2.2.33); in the new notation, the transition from
hyperbolic to trigonometric solutions occurs at n = 1.

The general solution to (2.2.45) is

8.(7) = C, cosh p,r + D, sinh p,r - 7 2o 5 forqg <1

o (2.2.46)
- forp > 1
1 -9

gn(r)” = C,cos p7s + D, sin p,r — 3

where
pa = all = 2|2

These equations are substituted into (2.2.41) to obtain the general solution for the
lateral displacement.

. .
w(t,7) = 3 |C,cosh p;r + D, sinh psr — n 2| sin -9%-{-
-1 -7
" (2.2.47)
“ + ¥ (C,, cos p,r + D, sin pyr — ~—| sin “—’2'{-
n=N+1 1 -9

where N is the largest integer for which n < 1.

The bar is assumed to be initially at rest. Also, recall that w is measured from
the initial displacement w,, so the initial conditions are

w(§,0 = w(£,0 =0 (2.2.48)

Applying these to (2.2.47) yields D, = 0 and C, = a,/(1 — 3?). The final solu-
tion is then

. = a Cos - ‘ .. nw -
vien = X T [co bt 1] sin 2752249
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in which the hyperbolic form is taken for n < 1 and the trigonometric form for
n>1

2.2.4 Amplification Functions

Equation (2.2.49) shows quantitatively the exponential growth of the buckling
terms. The ratio between the Fourier coefficients a, of the initial displacement and
the coefficients g,(r) in the buckling bar will be called the amplification function and
in this problem is given by

c0S
cosh

g, (1) - l

Gn(f) - 2 . ‘"2

P — 1| - (2.2.50)

A plot of this function, treating n as a continuous variable, is given in Figure 2.3
for several values of dimensionless time 7.

25 T T T T T T T 1
20
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GA-3570- 2224

FIGURE 2.3 AMPLIFICATION FUNCTION

It is apparent that, as time increases, a narrow band of wavelengths is
amplified having wave numbers centered at somewhat less than n = 1. To find the
wave number of the most amplified mode for late times, we differentiate (2.2.50)
fory < 1.

4G, L _a- 292)

dp?  292(1 — 9?)? (cosh pgr -~ 1) (2.2.51)
n 71 -

. 1
p.T Sinhp,r + m
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|
i




26

Setting this to zero yields

1.1 _coshpn'r—l
e (2.2.52)

For times large enough that significant amplification . 1s occurred, cosh pyr —~ 1 =
sinh p,r and (2.2.52) is approximated by

PoT

2 —
Par — 1

nu k- %- . (2-2-53)

To a lesser approximation, fur large v such that p,r >> 1, the wave number of
the most amplified mode is therefore

nc,z-\}{ - 0.707 (2.2.54)

Using this to obtain an estimate for pe; = n,(1 — n2)V2 = 1/2, a better esti-
mate for 7, from (2.2.53), is

U S
Na = 75 m— (2.2.55)

For example, at = = 6, Equation (2.2.55) gives 5., = 0.866, which is about 22%
larger than the value in (2.2.54). At 7 = 10, the estimate in (2.2.54) is only about
12% low. Thus, for practical purposes, the wave number of the most amplified
mode can be taken as m, = 1/v2. This will be calied the "preferred” mode of
buckling. The corresponding wavelength is found from

efp = 21, OF §p = 2, = 202 (2.2.50)
In dimensional units, from (2.2.38), this length is

x, = LA, = %:[2— r = 8381/Ve 2.2.57)

s

A graph of the maximum amplification plotted ageinst v is given in Figure
2.4. Beyond r = 4, growth is very rapid; at r = 12 initiai imperfections are
amplified by more than 400. These results suggest that a bar under very high
compression will buckle into wavelengths near 8.88 r/v& at nondimensional times
between 4 and 12. DBetter estimates for critical buckling times are given in succead-
ing sections.
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2.2.5 Dynamic Elastic Buckling Under Eccentric Load
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As an example, consider a8 bar eccentricaliy loaded as in Figure 2.5. For this

qroblem, the initial shape of the bar is taken as

W, (§) = 8/r £ # 0,
w,(§) = 0 § =0,

L {

P-.Tf - 5 T‘—P

’ GA-5733-10

FIGURE 2.5 ECCENTRICALLY LOADED BAR

(2.2.58)
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This initial shape is expanded into the Fourier sine series

wo(® = L a,sin I8 (2:2.59)

The coeflicients are found by using formula (2.2.43), which )ields

a, = A3 n odd |
awr
a, = 0 n sven (2.2.60)

From (2.2.49), the buckled shape is given by

wg,n= 3 B._1 [°°s p,r—llsin%'-{(z.z.sl)

not3. Rt 1 — q? [cosh

To evaluate this sum, recall that

m= 2T . and fornodd, in= 3T (2.2.62)
Then

_“_s.mﬁ_-ﬁ.-l__._zf.-.z_aA (2.2.63)

nrr nir m 2w d wry

and (2.2.61) can be written

08

wg,n = = i . 1:08h

w2 (1 = 9d

Pt — II sin n€ 4y (2.2.64)

If we assume that the bar is very long compari.d with the wavelengths of the buck-
ling, Ay —dn and 7 can be tregqted as a contir uous variable. The sum (2.2.64) can
then be replaced by the integral

S f 1 jes ]
w7 mj; T3 lmh P 1] sin nédn  (2.2.65)

'This is merely a plausible argument, but the resu't is correct, as can be confirmed by using a Fourier
integral representation from the start. Converting /rom a sum to an integral here can be done because
the function multiplying sin € in the integrand di 2a off for large » such that thare is no difficulty with
sin n¢ oscillating in the interval Ay = 2x/Q. For a more rigorous discussion see Reference 8.

v Y




A plot of the function

f(n,r) = sy~ 1I. (2.2.66)

1,(1 - 1;2) [cosh

in the integrand is given in Figure 2.6 for r = 6. To obtain an approximate analyt-
ical expression for the integral in (2.2.65), we replace this curve by the triangle of
height A in Figure 2.6, where A(r) = f(1/v/2, 7). Then

w(§,7)=%£ A(7) m sin pédny = 2—81?;-6(-;1 (sinn¢ - né cos nf)l(;

L 2A (1)

“are? (sing — £ cos £) (2.2.67
where
Alr) = 1 [cosh /2 — 1] (2.2.68)
1 1
3]
30—
A
20
f(n,6)
10 {—
To} I /]\@-A
0 05 _1_ i.0 15 20
JZ
n

GB-5733-11

FIGURE 2.6 FOURIER COEFFICIENTS (transform) OF BUCKLED SHAPE

The function
W) = 217 (sin & — £ cos &) (2.2.69)

which gives the approximate shape of the buckling bar, is plotted in Figure 2.7.
The wavelengths between peaks are slightly greater than 27 near che support and
approach 27 away from the support.
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This discussion gives an estimate for the buckled shape of a bar under ideal-
ized eccentric thrust and also shows how the anmplitude of the buckied form grows
with time. Specification of a criterion for failure by dynamic buckling, however,
depends on the particular structural problem at hand. For example, if the bar is a
push rod used to measure rapid displacements, large deflections within the elastic
limit could constitute failure. If a rod is used as a hammer, however, large dis-
placements are probably not objectionable so long as th: motion remains elastic and
the rod returns to its initial shape.

W(§): E';(sinf-fcosf)

6B~ $733-12

FIGURE 2.7 APPROXIMATE BUCKLED SHAPE OF BAR UNDER
SUDDENLY APPLIED ECCENTRIC LOAD

To give a concrete example, let us calculate the duration of load application
required to produce a combined bending-compression stress equal to the yield
stress. The maximum bending stress occurs at point B in Figure 2.7 where the cur-
vature W" = —0,235 and is a maximum. In general, the compressive bending
stress in the inner fiber, for a rectangular bar of height h, is

h
M— 2
'1_2' - _E«zﬂ g_’g - % %m.. = V3 Esw"  (2.2.70)
X

Op ™

Using (2.2.67) with W" = —0,235 and the time variation from (2.2.68), the bend-
ing stress at B is

oy = V3 Es? E‘}"‘L’ (~0.235) = ~0.732 & o feosh (£) ~ 11 2.2.7)

where o is the compressive impact stress.

The threshold of buckling is defined by the total stress o, + o reaching the
yield stress oy. With o, from (2.2.71), this condition gives the following relation

£ b i g, b A S et e <

e,
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between the compressive stress o, and the time 7, at which first yield occurs:
T
Oy

A graph of 7 versus o¢/ oy from (2.2.72) is given in Figure 2.8 for several
values of eccentricity 8, with 8 expressed in terms of depth h of a rectangular bar
for later comparison with experiment. The values chosen range over an order of
magnitude, from & = 0.00316 h to 8§ = 0.0316 h. The mid-value § = 0.0l hisa
representative value found from static experiments, as given by Equation (2.2.22).
We shall see that the dynamic buckling experiments described in Section 2.2.10
suggest that the static data do indeed give equivalent imperfections in the appropri-
ate range for the dynamic problern.

~1
-1+ o.732§lcosh [12“1] - 1] (2.2.72)

Also given in Figure 2.8 is a curve of the amplification G, [from (2.2.50) with
n = 1/v/2) required to produce first yield for an eccentricity 5 = 0.01 h. Similar
curves for & = 0.00316 h and & = 0.0316 h are omitted for clarity. This curve
shows that, for small values of impact stress, the amplification must be very large
to produce yield because the bending contribution must be larger and because the
wavelength of the buckling is longer. Under these conditions, depending on the
practical application, larger buckling deformations may constitute buckling before
the yield stress is reached, thus placing an upper limit on 7,,. However, with the
yield definition of buckling here, 7. approaches infinity (as does the length of the
bar) as P approaches zero.

At the other end of the curves, as the impact stress approaches the yield
stress, the amplification required to produce first yield is quite small (less than 10
for 0./ oy = 0.9). Also, in a real material the yield stress is not sharply defined

‘and, more important, the tangent modulus begins to fall rapidly as the material

yields so the elastic modulus in the present buckling formulation is inappropriate.
Thus, application of the curves in Figure 2.8 has little meaning for real materials
beyond about o/, = 09. Buckling in this range of loads is considered in
Section 2.3.

To obtain a physical interpretation of the curves, we observe that in physical
units dimensionless time 7 corresponds to the impulse of the applied load. Thus,
from the definition of 7 in Equation (2.2.38), this impulse is

Pt~ AN, 2.2.73)
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FIGURE 2.8 CRITICAL BUCKLING TIMES TO FIRST YIELD
FOR BAR UNDER ECCENTRIC LOAD

and the critical impulse that causes first yield from buckling is

I, = =1,

- (2.2.74)
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Also, the applied load can be expressed by

P = Ao, = Aa,lﬂil (2.2.75)

Thus the curves in Figure 2.8 can be interpreted as giving the combinations of load
amplitude P and load impulse I that produce threshold buckling. Load points above
the curves give more severe buckling, while load points below the curves give no
permanent buckling deformations. We shall see in Section 3.5 that amplitude-
impulse curves of this type can be applied to more complex structures, such as a
cylindrical shell under lateral pressure.

2.2.6 Dynamic Elastic Buckling with Random Imperfections

Another form of imperfection, more uniquely concerned with the dynamic
problem, is suggested by experiments to be described later in which a large collec-
tion of rubber strips were buckled over a wide range of dynamic thrusts. It was
found that the strips buckled into wavelengths that varied randomly at each thrust,
with a mean and standard deviation both inversely proportiznal to the square root
of the thrust as suggested by Equation (2.2.57). These results are consistent with

-the assumption that random imperfections in the strips are amplified by the buck-
ling motion. Thus the resulting buckled form, although still random, has statistics -

determined by the buckling amplification function given by Equation (2.2.50) and
in Figure 2.3.

Several methods of representing a random function have been described by
Rice’ in the study of filtering electrical noise. In the electrical problem, the func-
tion represents the variation of current with time, I = I(t). In the buckling prob-
lem here, the random function represents the variation of lateral displacement with
distance aloug the bar, w = w(¢). Thus there is an analogy between the two prob-
lems, with electrical current being associated with mechanical displacement, and
time in the electrical problem being associated with axial position in the mechanical
problem.

In the electrical problem, a noise signal I, (t), having Fourier components
aq(w,), is fed into a filter having an attenuation characteristic F(w,). The output
signal is I(t), having Fourier components A,(w,) = F(w,)a,(w,). In the
mechanical problem, the "input® is the initial displacement w,(£), having Fourier
components a,(n), and the "output” is the buckled form w(¢), having Fourier com-
ponents g,(n) = G(n,7) a,(n). Because the mechanical problem contains one
addcd variable, time 7, the amplification charzcteristic also depends on time as indi-
cated by G,(r) in Equation (2.2.50), which is dencted here by G(n,r). However,
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at each instant the analogy is quite close. The only difference is that in the electri- ;
cal problem the process is starionary, that is, the currents continue indefinitely in i
time and the statistics are taken to be independent of time.

In the buckling problem, the boundary conditions at the ends of the bar must i
be met so the statistics depend also on the position ¢, the variable analogous to
time. If the buckle wavelengths are very short compared with the length of the
bar, however, one would expect that some distance from the end of the bar the :
effect of ¢ diminishes and the assumption of stationary white noise would be
acceptable. With this assumption the two problems are completely analogous and ;
all the theory available for the electrical problem can be used here. ;

It is not necessary to assume that the random imperfections are stationary;
this assumption merely makes the mathematics simpler. Before this is done, con-
sider a random form of imperfection that does satisfy the boundary conditions of
simple supports at ¢ = 0 and ¢ = 2. These imperfections are given by

w(§) = £ a, sin ¢ (2.2.76)

n=1

! in which N will be specified later. The coefficients a, are random normal, having
mean value zero and standard deviation o (n). The normal or Gaussian probability
distribution is shown in Figure 2.9. If it is further assumed that o is constant over
all wave numbers of interest, then Equation (2.2.76) is called (nonstationary) white
noise. For w,(¢) to remain bounded, o must uitimately die off for large . Since
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FIGURE 2.0 ASSUMED NORMAL DISTRIBUTION OF FOURIER
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our central concern is in the buckled shape w(§) after the Fourier coefficients have
been amplified by G(y, 1), and Figure 2.3 shows that for n > 2 the amplification is
very small, harmonics with n > 2 can safely be neglected. Thus, in the initial
deflections given by (2.2.76), we merely specify that o(n) dies off in some
unspecified manner for y > 2 and is constant for 0 < n £ 2. This is the usual
assumption justifying the use of white noise as a fiiter input.

Since the concept of white noise can be apptlied only when associated with a
process passing a finite band of wave numbers, we must defer any examples of ran-
dom functions until after the amplification function with its inherent cutoff has

"been applied to give the buckled shapes. This function, repeated from Eguation

(2.2.50), is
- 1 cos -
Q(n,f) T o [cosh pindr -1 ] 2.2.17)
where
p=nll - 922

and the hyperbolic form is taken for n < 1. The buckled form is given by

wiE, )= 3 .G (n,7) sin n¢ (2.2.18)
=1

where N is the largest value of n for whichn < 2.

With a cutoff characteristic now applied, we can give examples of the func-
tions characteristic of buckling from random imperfections. Figure 2.10 gives two
examples of buckled forms calculated from Equation (2.2.50) using a length ¢ =
50w, which is 25 compiete Euler lengths and very long compared with the highly
amplified wavelength A, = 2% V2 corresponding to n = 1/v/2. With this choice for
2, n = 100. The procedure was to select 100 random numbers from a population
having a Gaussian diatribution as in Figure 2.9, with & = 1. These were then used
as the coefficients a, in Equation (2.2.77) and the summation was taken over 100
modes, corresponding 10 0 < n € 2. Higher harmonics would have he . a negligi-
ble effect as already mentioned because of the rapid decrease of G(n,7) with » for
n>2

In each example in Figure 2.10 (i.c., for each set of 100 random coefficients),
the buckled shape is plotted at 7 = 4 and r = 6. In both exampies, there are more
crests (waves) at + = 4 than at + = 6 because of the shift in the peak of the
amplification function in Figure 2.3 fromy = 1 atr =4 ton =08 atr = 6. At
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still later times, little further change in the number of crests would be expected
because, as discussed in Section 2.2.4, the point of maximum amplification does not
shift below n = 1/ V2 = 0.707.

Another feature exhibited in these examples is typical of buckled forms from
white noise: although they consist of a random assemblage of harmonics, they exhi-
bit a surprisingly regular pattern of waves. The average wavelength of this pattern
depends, of course, on the region of amplification defined by the amplification
function. In fact, an amplification function that is square in shape, constant for 7
< 2 and zero for n > 2, would give a wave pattern similar to those shown in ¥ig-
ure 2.10. This is exactly the waveform of the imperfection w,(§) corresponding to
the computational procedure used in generating the curves in Figure 2.10, but it is
not the waveform of the "actual" imperfection, whose Fourier components do not
cut off abruptly at n = 2. This is the reason that numerical examples had to be
deferred to the discussion of buckied shapes, any specification of a cutoff
wavenumber already implies filfered noise.
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FIGURE 2.10 TWO EXAMPLES OF BUCKLED FORMS
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The only way of quantitatively describing bucklied shapes such as in Figure
2.10 is to give statistics of the features of interest. The most easily measured quan-
tity in experiments is the buckled wavelengths, so statistics of wavelengths will be
calculated for later comparison with experiment. Direct calculation of these statis-
tics is beyond the means of currently available analysis except for a special case to
be given later. Instead, the statistics are calculated by the Monte Carlo method; a
large sample of random buckled forms is generated numerically by the procedure
just described, and the resulting data are plotted directly in the form of a probability
distribution (histogram) for the feature of interest.

To determine the distribution of wavelengths, we calculated 65 random buck-
led shapes as in Figure 2.16, each with a different set of 100 random values for a,,.
Wavelengths in each buckled shape were then measured for + = 6, and the histo-
gram in Figure 2.11a was prepared. The wavelengths were measured between alter-
_nate zero crossings for the first three waves from the sapport § = 0, not counting
the support as a crossing. Separate histograms were also prepared for the first,
second, and third waves individually. No significant differences were found, indi-
cating that the end support does not seriously affect the wavelengths even a small
distance from the support. '
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Many more computations would have to be added before this would approxi-
mate the probability distribution, but the main features of the distribution are
apparent. The mean wavelength is A, = 7.4, which lies between the Euler
wavelength A, = 2e = 6.28 and the "preferred” wavelength A, = 2x /2 = 8.88,
as shown. The standard deviation of the wavelength is oo, = 1.7 and the ratio of
standard deviation to mean wavelength is o)/A , = 0.23.

Figure 2.11b gives a histogram prepared from experiments on about 50 alumi-
num strips buckled under axial impact as described in Section 2.2.7. The mean
value of the buckled wavelengths is somewhat larger than in the theoretical histo-
gram (A, = 9.5 compared with A\, = 7.4 in Figure 2.11a), and the spread in
wavelengths is somewhat smaller. The narrower spread possibly results because
part of the initial imperfection was in the form of an eccentric impact, which tends
to produce a fixed wavelength as described in Section 2.2.5. However, the general
features of the observed distribution are adequately represented by the white noise
theory. More extensive experimental examplas are given in Section 2.2.9. -

An analytical expression for the mean wavelength directly in terms of the
amplification function G(n,7) can be given if it is assumed that the buckling dis-
placements are smationary, i.e., if the end conditions are neglected as discussed ear-
lier. With this assumption, the initial imperfections can be represented by station-

ary white noise as follows:

w.@=F a, sin (n€ + ¢ 2.2.79)

n=l

This form is similar to Equation (2.2.76) except that here the Fourier components
are added in random phase, with the phase angles ¢, uniformly distributed (with
equal probability) in the interval 0 € ¢, £ 2w. The buckied displacements are

then

w, (@)= 3 8,Gn.7) sin (g + b9 (2.2.80)

n=1

With the standard deviation of a, constant, it is reasonably simple to demonstrate’
that the mean wavelength between alternate zero crossings in the buckied form is

- 12
’ f G¥n,7)dy
An(T) = 2w -o
{-n’G‘(mf)du
l : A

(2.2.31)
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No analytical expression has yet been found for the standard deviation of
wavelengths, even with the stationary process assumption (Slepian'® diccusses the
status of this perennial problem in information theory).

For the complicated G(n, r) in Equation (2.2.77), no closed form expressions
for the integrals in Equation (2.2.81) were found. Instead, the integrals were
evaluated numerically over the region 0 < n < 2 of significant amplification for a
sequence of values of r. The resulting mean wavelengths are plotted against 7 in
Figure 2.12. The mean wavelength increases monotonically with v, but in the
region r > 6 of significant amplification (see Figure 2.4) the increase is very small.
At v = 6, Figure 2.12 gives A, = 7.4, which is the same result found in Figure
2.11 for buckles satisfying the pinned end conditions. Also plotted is the
wavelength corresponding to the most amplified mode, given approximately by
Equation (2.2.55) for large . The mean and most amplified wavelengths are very
close together and have very nearly the same variation with r. For large 7, both
approach the preferred wavelength A, = 2% /2.

0 T | T T 1
PREFERRED WAVELENGTH Age2W7 /2
)
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FIGURE 212 MEAN AND MOST AMPLIFIED WAVELENGTHS VERSUS
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These results suggest that, if it is reasonabie to assume that random imperfec-
tions are present in a bar as described. then the bar will buckle over the entire
compressed length, and the wavelength of the buckles will be reasonably well
characterized by the preferred wavelength A, = 2 /2. To calculate a threshold of
buckling, one can make the simplifying assumption that the motion consists of
response in only the preferred wavelength, with an assumed single equivalent
imperfection at this wavelength. This will now be done.

As in static buckling, imperfections can be divided into two types, one type
having amplitudes proportional to the thickness of the bar and the other having
amplitudes proportional to the wavelength of the buckling. In the following, both
types will be considered and it will be shown that the resulting critical times 7, for
buckling do not depend strongly on which type is assumed.

We treat first imperfections having amplitudes proportional to the buckle
wavelength A, and denote the coefficient of this Fourier component by A, in phy-
sical units. Thus we assume

A, = BL, (2.2.82)

where L, is the preferred half-wavelength (the buckled shape of an Euler column)
under the applied load P, corresponding to a half-wavelength A,/2 in dimensiona-
less units. In dimensioniess form these quantities, using (2.2.38), are expressed by

A, A L
=2, TPy =2 (2.2.89)
r

W= £ -“2-"- - —"—‘—?—9- (2.2.84)

The criterion for buckling is taken as in Section 2.2.5 on eccentric impact; a critical
time 7 is determined such that the bending stress pius the direct stress due to P
reach the yield stress.
The bending stress, from Equation (2.2.70), is
op = /3 Estw" (2.2.85)

The idealized buckled shape is simply a sine wave, given from Equations (2.2.77)
and (2.2.78) as

wig,7) = T'—&?F [cosh p(n)r — 1)sin n,¢ (2.2.86)




41

with m, = 1/v2. Differentiating (2.2.86) and substituting he result into (2.2.35)
gives the peak bending stress, at sin ,§ = 1, as

op= V3 Es? - a, [cosh -;- - l] (2.2.87)
which, using a, from (2.2.84), becomes

oy, = w6 BEs [cosh 12'— - 1] (2.2.88)

Finally, we use s? = o./E and the buckling criterion o, + o, = o, to obtain

1 - a'cla', - g _\/_ lcosh Ta _ 1] (2.2.89)
O 0‘,

This equation is the counterpart of Equation (2.2.72) for buckling from eccentric
impact. An essential difference is that here the critical curves for buckling depend
not only on the imperfection amplitude § but also on the yield strain ¢,. This
results from taking the imperfections proportional to the buckie wavelengths.

Curves of 7 versus o/ o, from Equation (2.2.89) are given in Figure 2.13
for ¢, = 0.005, a representative value for engineering metals. Values of 8 are
taken from 0.0001 to 0.001, corresponding to the range of imperfection amplitudes
observed in static buckling as given in Equation (2.2.23). The curves are quite
similar to those in Figure 2.8 for eccentric impact except that the critical times 7,
change more slowly with o ./ oy (i.e., the curves are more nearly horizontal for
intermediate values of o/ o,). Also, 7 does not shoot up to very large values
until o/ oy is very small. These observations can be made by comparing the solid
curves (imperfections proportional to wavelength) with the dashed curve (which
has the same functional form as in the curves for eccentric impact).

Critical buckling times for impearfections proportional to the depth of the bar
are found._in essentially the same way. The equivalent imperfection amplitude in
the preferred mode is then given by

A, = 71 (2.2.90)

Using this in place of Equation (2.2.82) and applying the same procedure as for
imperfections proportional to wavelength, the expression for v becdmes

-1
{gf_ = 1+ 3y Igosh e _ l] (2.2.91)
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This is exactl; the same functional form as found for eccentric impact, with the
constant 0.772 8/r replaced by v3y = V3A,/r. Again, . depends only on
o/ oyand not on the magnitude of the yield strain ¢,
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s for imperfections proportional to wavelength, we take as estimates for y
the values found appropriate in static buckling. For a rectangular bar of depth h,
the static empirical formula (2.2.24) gives the conservatively large value y = 0.1
r/(h/2) = 0.058. In Figure 2.13 the dashed curve is a plot of Equation (2.2.91) for
a somewhat smaller value (y = 0.0346, corresponding to A,/h = 0.01) to give an
intermediate value for comparison with the solid curves. This comparison shows
that the values of 7, calculated for either type of imperfections (with representative
values for both taken from static buckling) give very nearly the same result. More
impo:tant, as we shall see in the next sections, these curves comoare favorably with
observed thresholds of dynamic buckiing.

2.2.7 Framing Camera Observations of Dynamic Elastic Buckling

In practice, the most directly applicable physical problem for ihe preceding
theory is the impact of a long bar against a raassive object. We consider that the
bar is originally stress-free and moving toward the object with velocity V as shown
in Figure 2.14a. Since to a good approximation the object can be considered a rigid
wall, on impact the left end of the bar immediately comes to rest. Adjacent parti-
cles to the right come to rest later as a stress wave of magnitude o propagates to
the right at the bar sound velocity c. When the stress wave has passed a distance
X into the bar, the impulse applied by the end load at the rigid wall must be equal
to the initial momentum of the length x, brought to rest by the stress wave. This

\
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FIGURE 2.14 AXIAL STRESS WAVE IN A BAR IMPACTING
A RIGID WALL
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condition is expressed by
Xg
oA - - = pAx, 'V
or

o = pcV 2.2.92)

This situation is conveniently produced experimentally by using a tensile test-
ing machine.!! The initial velocity V is produced by first pulling the bar to a tensile
stress . Beforc the tension is applied, a notch is filed in the bar near the upper
jaw with its depth adjusted so that fracture occurs at the notch when the stress in
the remainder of the bar is near the desired stress o. After fracture, a (compres-
sive) relief wave travels down the bar at velocity c, leaving the bar stress-free
behind the wave and traveling at velocity V = o/pc by the same argument just
made for axial impsct. When the wave arrives at the lower jaw it reflects, again as a
compressive wave. Since the bar is completely stress-free and traveling at velocity
V at the instant of this reflection, Equation (2.2.92) can be used, giving a compres-
sive stress equal to the initial tensile stress . In reality the stress rises to this
value in a finite time comparable to the time for stress waves to cross the bar and
communicate the notch fracture to the full cross section.

An example!? of a strip buckled by this procedure is given in Figure 2.15.
The strip is made of aluminum alloy 6061-T6 with a 0.5 by 0.0125-inch (12.7 by
0.32 mm) cross section and a length of 30 inches (726 mm) between notch and
lower jaw. The photographs show only a few inches of the strip just above the
lower jaw. The magnitude of the compressive wave was ap; roximately 40,000 psi
(276 MPa), between 10% and 20% below the yield stress. It was photographed by
an ultrahigh-speed framing camera at a framing rate giving 6 microseconds between
frames.

In the figure, at 18 us after the arrival of the compressive wave, the strip
appears straight, but careful measurements show that it is slightly buckled even at
this early time. At 24 us the deflection is perceptible in the printed reproduction
here, and at later times the developing buckles are clearly visible. Aill the buckles
remain nearly fixed in position and merely grow in amplitude, just as in the ideal-
ized eccentric impact example. The lowermost buckle continues to grow
throughout the time shown, but the upper buckies oscillaie beyond 70 us because
the very large deflection of the lower buckles reduces the thrust by allowing the
remainder of the bar to move toward the jaw. The rapidity of the buckling is
demonstrated by the lateral velocity of the crest of the lowermost wave, measured
to be 75 ft/sec (23 m/s). The wavelength of the lower buckle is about 0.47 inch
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(Time measured from compressive reflection at lower jaw)

(11.9 mm), very close to the value of 0.50 inch (12.7 mm) calculated for the pre-
ferred wavelength A , from the theory.

2.2.8 Streak Camera Observations--Effects of the Moving Stress Wave

The theory, of course, is not strictly applicable to the impact problem because
it assumes that the thrust is uniform throughout the length of the bar. In impact,
the thrust is applied by the moving axial stress wave, and at each instant only the
distance enveloped by the wave is under compression. To observe possible effects
of this moving wave, and also to observe early expon~ntial buckling growth as
predicted by the theory, we used another experimental arrangement!® to amplify
recordings of the tiny early motion. Instead of the buckling being observed directly
in an edge-on view as in Figure 2.15, the strip was polished on one side and the
reflected image of a series of light sources was viewed with a streak camera as
shown in Figure 2.16. The shift in position of the light source is proportional to
the product of the small change in slope of the strip at the point in which the image
forms and the distance between the light source and the strip. With this method,
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FIGURE 2.16 OPTICAL LEVER METHOD OF OBSERVING
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deflections of the order of 50 millionths of an inch (1.3 um) were casily resolved,
and the exponential growth was observed.

A plot of peak displacement versus time {assuming the buckle was 8 simple
sine wave at the observed 0.65-inch (16.5 mm) wavelength] is shown in Figure

© 2.17 for one such experiment. The magnitude of the stress wave in this experi-

ment was approximately 30,000 psi (207 MPa), and the cross section of the alumi-
num strip was 0.50 by 0.0116 inch (12.7 by 0.29 mm). The experimental points are
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FIGURE 2.17 EXPERIMENTAL (POINTS, FOR DEFLECTION ONLY) AND
THEORETICAL (CURVES) BUCKLE AMPLITUDE VERSUS TIME
(MATCHED AT 22 us) ‘

peak displacements A(t) measured from the initial (i(!eilimd) displacement A,.
The lower smooth curve passing through these points is a theoretical curve calcu-
lated under the assumption that the growth is adequately represented by the pre-

ferred mode. Taking , = 1/v2 in Equation (2.2.50), the amplitude of this mode
is

A(r) = 2A,lcosh (7/2) - 1] (2.2.93)

Using € = 0.003, ¢ = 0.20 inch/us (5 mm/us), and r = 0.0116/~/12 inch (0.085
mm) in Equation (2.2.38) gives r = 0.18 t, with t in us. The Fourier coefficient
A, of the equivalent initial imperfection was adjusted to 9.1 x 10~3 inch (2.3 um)
to fit the experimental data as shown. The upper curve is the calculated total
amplitude A, + A(7).
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This experiment demonstrates that the observed buckling consists of
exponential growth that can be calculated quite adequately by the simple theory.
The simple uniform thrust theory is adequate, even though the thrust is applied by
a moving stress wave, because the stress wave has moved a large distance along the
bar before significant buckling displacements appear. For example, in Figure 2.17,
the peak amplitude of the buckling is only about 0.001 inch [0.03 mm, giving a
bending stress of 4600 psi (32 MPa), well within the elastic limit] at 30 us after
passage of the axial stress vave, At 30 us the stress wave has propagated about 6
inches (152 mm) along the bar, about 10 times the observed wavelength of 0.65
inch (16.5 mm).

However, the high magnification of the optical lever did reveal that the axial
impact produced very high frequency bending vibrations superimposed on the buck:
ling motion. On the original streak camera record, an oscillation was observed
having a period of 3.1 us (320 kHz) and a peak-to-peak amplitude of about 5 x
107 inch (0.13 wm). The oscillations appeared to be a wave train propagating
along the bar from the impact at the lower jaw at a phase velocity of 0.075 inch/us
(1.9 mm/us), giving a wavelength of (0.075)(3.1) = 0.23 inch (5.8 mm). These
oscillations had liitle effect on the buckling, apparently because of this short
wavelength and because their period was so short compared with the buckling
motion (3.1 us corresponds to Ar = 0.55). Thus we can conclude that effects
dependent on the moving axial stress front had a negligible effect on the buckling.

The argument concerning the distance the axial stress wave has traveled dur-
ing the buckling motion can be stated analytically. From the theory, we have seen
that whether we assume the imperfections ars local in nature, as in eccentric
impact, or consist of a general random form of imperfections, the wavelength of
the Hickles is always quite close to the wavelength A, = 2w <2 of the preferred
mode. Also, the magnification of the buckling motion depends only on r, all other
essential parameters having been inciuded in its definition. It seems reasonable to
assume that effects of the axial stress wave will be small as long as significant
magnification takes place only after the axial wave has passed several buckle
wavelengths along the bar. Without specifying a numerical value, we assume that
the buckled form is unaiterably determined (e.g., the buckled deformations are
much larger than the initial imperfeciions) at a critical time r,. Using the
definition r in Equation (2.2.38) gives for the corresponding real time

te = ;;; Ta (2.2.94)

"l‘hu_n were ohserved on all three experiments performed.
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Real time t can be expressed in terms of the number N of preferred wavelengths L,
through which the axial stress wave passes at velocity ¢, giving

N AR Y/ 1 (2.2.95)
[+ [+

Putting this into expression (2.2.94) for critical time and using the definition of s in
Equation (2.2.38) gives

- T 1
Ne Cyy iy (2.2.96)

This suggests that the reasonableness of neglecting axial wave effects depends only
on the compressive strain of the axial thrust. In metals this strain is very small
within the elastic limit and, as we have observed, elastic buckling is adequately
represented by the constant thrust theory.

2.2.9 Experiments on Rubber Strips--Statistical Observations

Since Equation (2.2.96) suggests that axial wave front effects, if any, would
be more pronounced at large compressive strains, confidence in the theory would
be enhanced for metals if it could be demonstrated experimentally that the theory
is acceptable in a inaterial that can withstand large elastic compressive strains. Pure
gum rubber is such a material, and experiments have been performed using this
material to strains up to about 15%.1

The apparatus for these experiments, shown in Figure 2.18, is very simple
and can be used for classroom demonstrations. A strip of pure gum rubber 0.0375

FIGURE 2.18 APPARATUS AND TYPICAL RECORD FOR BUCKLING
RUBBER STRIPS
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x 0.50 inch (0.95 x 12.7 mm) in section and about 1 foot (0.31 m) long was
looped over one end of a rigid support bar and secured by means of masking tape
as shown, with extra layers of tape wound above and below the rubber strip so that
its end was separated from the support bar and the cover bar. The cover bar is
shown above this assembly in the photograph. A strip of emery cloth has besn
glued to it and saturated with chalk dust.

In an experiment, the free end of the strip was held between thumb and

forefinger, the cover bar placed over the strip, chalked side down and not touching
the strip, and then the strip was stretched to a specified strain and released. The
wrinkled strip impacted the chalk bar with sufficient velocity that a weil-defined line
was left on the strip at the crest of each wave, as shown. The pedtlon: of these
lines were easily measured to an accuracy of 0.01 inch (0.25 mm).

To examine the applicability of the random noise assumption for imperfec-
tions, in addition to the applicability of the constant thrust theory, many experi-
ments were performed so that statistical distridutions could de prepared. Figure
2.19 gives histograms of the measured wavelengths for several values of initial ten-
sile elongation. These data were taken from tesis on 18 strips, each muadme
mim,frommﬂlmmla;estsmininordermmininnumy '
caused by the wrinkiing of a previous: test. Buckiing at a strain greater than 25% is
rather viclent and loaves the strip with a definite bias toward the corresponding
wavelength. The number of waves observed in eich test varied from 2 to 3 at 3%
strain up to 12 at 16% strain. The same strip tested repeatedly at the same strain
gave an almost identical wave pattorn each time, consistent with our mathematical
model in which the imperfections are assumed random but fixed for eny- given bar.
Data from only the first test at each straiti were used for the histograms. Each his-
togram has a malofﬁomﬁonssotheymbecomdm

repeasuated by wilte oo, we sob that the Vidte nole 4 estfociions co
good ducripﬁon of the eburveé lmckhng.

Tommmeomodmvebnmmmnmmmmm we
must take into account the large straing involved. Only the final compressive strain
resulting from the initisl tensile strain is needed, 30 the corrections can be obtained
wmloutrefmwtiedomhofwm-\nvewom It is sufficient to

e




s
10

8
1o |-

S o' o0

o &

FREQUENCY OF OBSERVATIONS
o o

' o o

S,
RIEEL

Yo

N | S T S . o W O O I O )
‘ A 6 6 o4 O8 oO08 10 12 s
: ) ) : WAVELENGTH — inthes (x 20.4 = mm}

K]

st




52

assume that the rubber behaves elastically so that the potential energy stored in
compression equals the initial potential energy in tension. Tensile stress-strain tests
performed on sample strips showed that true stress was linear with elongation out
to at least 100% with a Young's modulus of 285 psi (1.97 MPs). Thus the initial
tensile force F in the strip is given by

A,
F = Be T+ e 2.297

where A, is the unstressed cross-sectional area of the stripand e = (2 — £,)/4,is
the elongation. The initial smd energy at pniform tensile clongation ¢y is equal

o

e
- f F(2)dz

ofo lOI.(l -+ (-r) (2-2.98)

where z ig in the position of the moving end of the strip. Sinmuly, the compres-
sive energy stored in the str\p is

Ue = = BAS, log(l - &) o (2.2.99)

expressed so that the compressive- strein € is a positive qumﬁw When these ener-
ﬁummmecommyemdnisﬁmndtobuimply

l_+t1|-

Futther, mmmnmmwmm,mmmm
mhberismeomaﬁh.is ‘ )

h= E—:E';-)—g; , » (22100

waeummmumdemunnformmmformdnam

sudne,bmmommdwhontheatﬁphntet\mdwmm The ratio of the

Nm-mmmn,mtuwmmmmwis,wm
"Mnofcc.

2.2.102)

u SN S
T

The wavelsngth of the "most Wmﬁdﬂn dimmﬁonhuwma ¢is

1 -«

€ - — o . (2.2.100)
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Ap = 2V2w. Using this with Equations (2.2.38) and r = h/V12, the wavelength
of the most amplified mode while the strip is under compression is

\/2
2 h
Rpe = '-;l :"—2 (2.2.1703)

After the strip has relaxed, this preferred length would be elongated according to
(2.2.102). Using (2.2.103) in (2.2.102) with (2.2.100) and (2.2.101), the elongated

length is given by .

12 2 :
R = [-g-’ 9——:-;‘7,‘-1)— h, (2.2.104)

In Figure 2.20 the observed wavelengths of Figure 2.19 are plotied sgainst
this preferred length, the cirshéyointsuvin;thcmunvduumdthehrsexmd-
ing one standard deviation above and below the circles. The mean values fall very
close to a straight line through the origin, and the ends of the standard deviation
bars are also closely bounded by straight lines. These observations suggest that
Equation (2.2.104) gives the proper form of variation with strain. However, the
ratio between observed and preferred wavelengths (the slope of tk2 line through
the circles) is 1.70 here as compared with only 1.07 for the aluminum experimenis
given in Figure 2.11. This difference is attributed to strain-rate effects in the
rubber. If, for example, these effects are lumped into an effective dynamic
compressive modulus k times the static tensile modutus, the preceding .heory gives
a slope of 1.00 for k = 2.

Although the foregoing interpretation of the discrepancy. between the alumi-

num and mbbe: expeﬂments ia somew!m spocuktive. the smooth variation of
sapports the comclusion that lateral

motion immediately hehindthemttmfmnt m:moﬂmonmm
kie formation and that a constant-thrust-theory can be.used with confidence. The

minea‘eetofthemveuncthmstwmtthedumﬁonofmwmum

moves away from the struck end, mdtl\heouldnﬁlybemwforbyslmw
assigning a different duration to each wrinkle. This conclusiog should also be appli-
cable to more complicated structures, such as cylindrical shatls under axial impact.
For large deflections, -it might also prove neecdsary to-compute a new thrust for
whwave,mdm&wmwhmmmmsnm

2.2.10 Buckiing m in mm

soownesﬁmmofemmimmmtobewinesﬁM‘
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using a teasile testing machine as described previously. Tests were run on strips
172 and 1/4 ingh wide (12.7 and 6.3 mm) and 0.0124 and 0.025 inch thick (0.31
and 0.63 mm). The initial tensile stress (and reflected compressive stress) was
nominally adjusted to 0.4 and 0.7 times the yield stress of 42,000 psi (290 MPa) by
appropriately sized fracture notches in the strips. Duration of the thrust at the
lower jaw was varied by varying the length L between the notch and lower jaw, the
duration being 2L/c. For each combination of strip widtk thickness, and compres-
sive stress, tests were run at increasing lengths until plastic buckles appeared.
These were observed by sighting down the shiny finish of the strips, a simple pro-
cedure with high resolution. The dimensionless time r, from its definition in
Equation (2.2.38), is

S (2.2.105)
r < r

Figure 2.21 gives a plot from tesis at many comt;inlﬁons of axial stress and

duration, with open points representing tests in which no buckling was observed
and solid points tests in which buckling was observed. The upper points (longer
duration, buckling) are all solid, and the lower points (shorter duration, no buck-
ling) are nearly all open, as would be expected. At intermediate durations, buck-
ling and no-buckling points are intettningied as & result of the random nature of the
imperfections. Also given on the same graph are theoretical curves similar to the
dotted curve in Figure 2.13 for assumed imperfections in the preferred mode pro-
portional to strip thickness. The experimental transition band of intermingled
points between no buckling and buckling follows the trand of the theoretical
curves, with equivalent imperfections in the experiments ranging from about 0.01
to 0.03 times the thickness of the bar.

The most severe buckies generally appeared at the jaw or one plastic hinge
from the jaw, as would be expected because of the longer duration of thrust near
the jaw and the possibility of eccentric loading (see Figure 2.7). As often as not,
however, three or four plastic hinges were observed, suggesting that random imper-
foctions throughout the bar were at least as important as eccentric loading. Buck-
ling a fow wavelengths away from the jaw, of course, hed to take place in a
Mmmmmm&wmwmmmmm

impiied in Figure 2.21. However, this effect is smalt because the wavelength of the

buckiing is small compared with 2L, as discussed in reistion to Equation (2.2.96).
Thus we can conclude that random imperfections in these lests were equivalent to

“Twe widths were tasted at each thickness ® examine the effect of fracture time on buckiing. It was
foudd it any posuible effects were maskiidl by changes in critical ioads cavsed by rendom vatiations ia
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FIGURE 2.21 OBSERVED BUCKLING COMPARED WITH
CRITICAL CURVES FOR IMPERFECTIONS
IN PREFERRED MODE PROPORTIONAL TO
STRIP THICKNESS

, single imperfections in the preferred mode of 1% to 3% of the strip thickness. This
result can be used to calculate critical pulse loads in a variety of dynamic pulse
buckling situations, including buckling of plates and shells. This hypothesis is
confirmed by experiments on shells presented in Chapter 3.
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2.3 DYNAMIC PLASTIC FLOW BUCKLING OF BARS

2.3.1 Introduction

In the preceding theory and experiments, the axial stress was much greater
than the static Euler buckling stress, but was restricted to be less than the yield
stress so that the buckling was elastic before yielding at the crests of the buckles.
In thicker (or shorter) bars under axial impact, the time required for significant
elastic buckling is long compared with the duration 2L/c of axial compression at the
point of impact. In these bars buckling occurs only when the impact stress and
strain are well beyond the elastic range. In this section we treat the buckling of
bars that takes place during sustained axial plastic flow with final plastic strains from
about 1% to 30%, depending on the thickness of the bar.'

Figure 2.22 shows several 1/2-inch-diameter (12.7 mm) aluminume-ailoy
(6061-T6) bars that buckled plastically during axial impact against a heavy steel slab
at the velocities indicatcd. Permanent shortening of the bars is shown by the rela-
tive positions of the impacted ends. Thickening extending several inches from the
ends is apparent for the higher velocities, and within this thickened length, there is
plastic buckling with a distinguishable wavelength, almost uniform, for all speci-
mens. Similar effects are shown in Figure 2.23 for 1/4-inch-diameter (6.3 mm)
bars and in Figure 2.24 for 1/2-inch-diameter (12.7 mm) tubes of another alumi-
num alloy (2024-T3).

Figure 2.25 shows a series of high-speed framing camera photographs of one
of the 1/2-inch-diameter (12.7 mm) aluminum (6061-T6) bars during impact
against a heavy steel plate. Buckling is first apparent at 11 us and is complete at
242 us. When the bar strikes the plate, a siress wave traveling to the left is pro-
duced in the bar. The associated axial strain, obtaine¢ from the thickening of the
bar, is sihhown in Figure 2.26. The lower curve in Figure 2.26, corresponding to the
110 - us view of Figure 2.25, indicates axial strains of several percent extending 3
inches from the impact end before buckling. The upper curve indicates that the
axial strain at each cross section increases with time during the buckling motion.
Axial flow ceases, at each cross section, upon the arrival of the elastic unioading
wave from the free end of the bar. Thus the total period during which some part
of the bar is in sustained plastic fiow is the time required for the elastic wave to
propagate from the impact end to the free end and back to the impact end. For the
18-inch-long (0.46 m) aluminum bars described here, this is about 220 us.

Since the strain at each cross section continually increases, the buckling is
treated as a pettubation of the motion associated with the axial compression. It is
supposed that the axial strain rate dominates the extensional strain rate introduced
by the bending motion; therefore, no strain-rate reversal occurs until after the
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FIGURE 222 ALUMINUM (6061-T6) RODS BUCKLED BY LONGITUDINAL IMPACT

Diametar, 0.454 inch (11.5 mm), length, 18 inches (457 mm).
Ratio (vlv‘,)2 gives ratio of kinetic energy cf rod to elastic strain energy
it can absorb. (ft/sec x 0.305 = m/s)
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FIGURE 223 ALUMINUM (6061-T6) RODS BUCKLED BY LONGITUDINAL IMPACT

Diameter, 0.209 inch (5.3 mm), length, 18 inches (457 mm).
(ft/sec x 0.305 = m/s)

ATiet  vsi8Y t1/sec

AT1+2 =330

ATIe10 =492

2844
ATIs 1 -89

SR
FIGURE 224 ALUMINUM (2024-T2) TUBES BUCKLED BY LONGITUDINAL IMPACT

Diameter, 0.454 inch (11.5 mm), wall, 0.076 inch (1.91 mm),
length, 18 inches (467 mm). (ft/sec x 0.306 = m/s)
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FIGURE 2.256 ALUMINUM (6061-T6) ROD BUCKLING UNDER LONGITUDINAL
IMPACT WITH A HEAVY STEEL PLATE AT 420 ft/sec (128 m/s)

Time is measured from initial contact. Debris is wadding from rifte
used to accelerate rod.
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FIGURE 2.26 AXIAL STRAIN VERSUS DISTANCE FROM
IMPACT END FOR ROD IN FIGURE 2.25

buckling is well developed. In this period, bending occurs relatively easily since the
bending stiffness, being proportional to the tangent modulus in the plastic region of
the stress-strain curve, is about 100 times less than the elastic bending stiffness.
When strain-rate reversal supervenes, or the elastic unloading wave returns from
the ‘ree end of the bar, the bending stiffness increases; becoming partly or wholly
governed by the elastic modulus. To keep the theory simple, in the following
analysis, linear strain-hardening, corresponding to a constant strain-hardening
modulus, is assumed. Furthermore, since, as indicated in Figure 2.25, no percepti-
ble buckling occurs while the wave front traverses a wavelength, the wave front is
disregarded and the bar is taken to buckle under uniform axial strain.

2.3.2 Differential Equation of Motion

We consider a uniform bar, as shown in Figure 2.27, which is suddenly sub-
jected to a thrust P, exceeding the yield value. The thrust is assumed to prevail
throughout the bar and throughout the motion. Figure 2.28 shows the siress-sirain
curve taken for ithe material. Since axial flow is maintained, P must increase
steadily; however, the strain-hardening is slight so the increase is small, and P will

_be taken as constant.
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FIGURE 2.28 IDEALIZED STRESS-STRAIN DIAGRAM

Fbmﬂmnmmﬁ&ewhmt@msmhtmifmmim«
tial velocities exist. As mentioned , the flexire is treatod as relatively
mmtuummmmsmmummaupwm:)m
Figure 2.27 is never enough o countaract the coiipresst ‘strain rate of the axial
flow. Thus the corresponding point B’ in Figure 2.28 continues to move steadily
upward, but it Iags behind the point C', common.ﬂutopolntCmF’mM?
wmmoﬂememmbumawmm
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The instantaneous difference in strains and stresses at B and at C implies a
Wmmu,mwwmtmwmumn-mmm
E,. The appropriate relation for a slender bar is of the same form as for elastic

behavior and is given by '
M = —B,Ar? %% , (2.3.1)

where A is the area of the cross section, and r is the radius of gyration.

From Figure 2.27, we have for translation of the element

8 _ A i;-:{- 23.2)

with p for density. Neglecting rotational inertia, we have for rotational equilibrium

Q + P;";-(y + y,) ™ %?;“—- (2.3.3)

where y, is the initial deflection in the unstressed state.

We now chanie to dimensionless quantities defined, with P = Ao, by

=L | yed oy - L 2.3.4)
h T T
- X A N
=< TTEP"E

These parallel the notation in Section 2.2 except that E,, replaces E.

In (23.1), (23.2), and (2.3.3), we treat E,, A, p, and P as constants. Elimi-
nation of M mdeiemmediﬂmwaqmuonformednmﬁommﬂon
w in the form

"” + w" + w - _' (235)

wmmmdumﬁmm:qmmtof,ndmmuwaﬁm
with respect to . This is identicel to Equation (umfmmmmmpt_
for the difference iniplied by replacing E bty E,.

Tiws, this simplified thieory for dynamic plastic flow buckling is compiotsly
mmmmrmmm&mmwmmmd
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the arguments on the nature of the buckling, can be used directly from Section 2.2.
To avoid cumbersome reference back to corresponding equstions-in Section 2.2, the
main results are derived briefly here. The derivation is made in térms of Fourier
integrals rather than Fourier sine series to illustrate this alternative method of solu-
tion. Use of the Fourier integral representation, which applies to the infinite inter-
val 0 < § < oo, makes explicit that buckling does not depend on the length of the
bar (because it occurs before any signal is received from the free end). Also, per-
turbations in initial velocity are considered in addition to imperfections in initial
shape. Since the Fourier transform derivation leads to amplification functions
identical to these from a Fourier series derivation, either approach can be used as
preferred. ~

'2.3.3  The Initially Straight Bar..

For flexure arising from initial transverse perturbationa! velocities (as, for
instance, from elastic bending waves following a slightly oblique impact), we put w,
= 0 in (2.3.5) and consider w in0 < § < oo representable by

wig,n) = [ gn,n) sin g - dn 2.3.6)
0
The initial conditions are

wigO =0 . w0 = v, [ o) sin g dn Q3D
(i ) !

with

w0+, 0) =~ 0

~~

where v, is an amplitude factor. The Fourier integral transform g(», r) is found
from (2.3.5) to satisfy

i—n -gdg =9 (239
With the initial conditions (2.3.7), the solution of (23.8) is

tﬁﬁﬂ' - 1239

v Byt
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where

p = wll - 97|V Q30
and the hyperbolic form is taken in (2.3.9) for . < 1, the circuler form forg > L
The possibility of large growth during the buckling period appears in sinh pr

for wave numbers v close to a preferred value n,. The buckling forn. is then attri-
buted to mcdomm«ofmewwumwmqf in (23.6). To

distinguish this preferred vdee.monMh(&39) thewiﬁuﬁoaof\

v,B(n) is expressed by p~! sinh pr, which may be written as
wy = r{pr) ' sinh pr (2.3.11)

The function x~! sinh x increases monotonically wnth x, forx > 0. Thus for
a given 7, (2.3.11) is greatest when p is greatest. From Q. 3. 10), the value for ¢
for which p is a maximum is »
n, = 1/ V2 | (23.12)
The corresponding magnification (2.3.11) is

. . .

pymex = 2 siph —7 (2.3.13)

2

Fisurezzhplouﬂnvﬁwoﬂhe 5 f;_min(2311)nfuneuons
oftheuwnmbuq,formmdeMeh .The haif-wavelongths wr/sy,
Mhmmdmmﬂmhmﬂmmm&wﬂ “These.
involve the value 3 = 0:50, which ss shown later is appropriste 10 the material of
the bars in Figure 2.22. The times in microssconds correspond, for the bars of Fig-
" ure 2.22, toeachoftheulumdu“off Att-ﬂps.thlo'eltcuﬂe,the
magnification is only slightly selective. But at t = 156 us, which is well within the
duration (220  ug) of sustained plastic flow, it is swongly selective. The peak
occurs, corresponding to (2.3.12), for the half-weveiongth S.08 ¢, which for the bars
in Figure 2.22, is 1.01 inch. Comparisons with st sesishls are made in Section
23.5.

2.3.4 The Nearly Stralght Ber
 To ovaluats the offect of an inikial deflestien sepstad by w, in (2.36), we

[
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Again considering a solution of (2.3.5) in the form (2.3.6), we find
_ 1 e ] |
g = Saly =37 | cos pr 1] (2.3:16)
with p given by (2.3.10) asid the byporbolic form betaitnkan fornp < 1.
For < 1, the magnification factor mﬁluplyin.»a.u(q) in (2.3.16) is
M= (- 9deoshpr ~ 1) 3.7

This vanishes for n = O and is +2/2 for 4 = 1. It haa a maximum with respect to
v, for given v, whea

_1_ —lm - SOShpr—1 (2.3.18)

21) _ pr sinh pr

hmmmwmhmmmm in which
thﬁof(iBl&)wﬁmby-llw Since pr will then
itsolf bo considersbly larger than unity, (2.3.18) will yield a value of »? somewhat
greater than 1/2. Curves representing m; in (2.3.17) as a function of 4 are shown
in Figure 2.29b-for throe solected values of 7.. The upper two curves show the
peaks to the right of 3 = 1/VZ, closer for the higher r, as expected. The selective
mnniﬂaﬂonmmbhsthatinﬂgmzm

2358 m«mmsmm

knmdh@admww&&wm”hemw
mmmmmmmmm The peak in the

‘curve of Figure 2.294, for initial velocity perturbations, oocurs at 4 = 1/v3 and in

Figure 2.29b, for initial' displacement perturbetions, at a value about 15% higher
(for 7 = 3). Assuming that there is no dominant pesk in the initial perturbations,
we ke n = lleiuthetheomicdmemmbu The correspondin: half-
wavelength is

A - wr(2E,/ o) 2 O (2309)

_vwacma.mmfmmmmmmmmm
in Figure 2.30. memmnhnwmmmmmm
of Hinear strain-h ng, & straight line is passed through the data potiita for 1% to

3% sieain, this being the range in which buckling is initiewed (ses coluran 4 of
Tables 2.2, 2.3, and 2.0). rummwaw:.mwmnm
21 wmmmmmmmm :
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FIGURE 230 STRESS-STRAIN DATA
Table 2.1
THEORETICAL HALF-WAVELENGTHS (A)
i | oim
‘ Specimen Type Magerial o E, o/, ¢ A
British Units
Wind)  (b/in?) (inch)  (inch) |
Rod, 0.454-inch-diameter  6061-T6 45 180 025 0113 1.0l |
Rod, 0.209-inch-diameter ~ 6061-T6 45 180 025 0052 046 |
Tubing, 0.454-inch-dismeter, 2024-T3 53 @ 013 013 10 ‘
0.075-inch wall ! |
\ - SEUsits
) | MM G (mm)  (mm)
. : . }
Rod, 11.5-mm-diameter 6061-T6 310 L4 028 287 286 |
! Rod, 5.3-mm-diameser 61-T6 310 14 0 1 1 3
Tube, 11.5-mm-diameter, 224-T3 366 2™ 02 1
1.9vmm wall L L B
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The observed half-wavelengths were determined from plots of the buckled
shapes such as that shown in Figure 2.31. The half-wavelengths obtained for
several Y%-inch-diameter (12.7 mm) aluminum (6061-T6) bars are listed in Table
2.2. The observed half-wavelengths are in reasonable agreement with the theoreti-
cal value of 1.01 inch (25 mm). At the higher velocities--for example, for the lust
bar of Table 2.2--the half-wavelengths are shorter near the impact end. This is
attributed to the lower average value of E, (see Figure 2.30), corresponding to the
higher average strain, which prevails near the impact end during the buckling
motion

AR4 .. ‘

— ' 1
AR-S
AR-9

[T0.02 inch = 0.5 mm

AR-8

L1 1 1 I | N DR

8 7 6 5 4 3 2 1 0
DISTANCE FROM IMPACT END — inches

GA-3570-311

FIGURE 2.31 DISPLACEMENT PLOTS FOR RODS IN FIGURE 2.22

The observed half-wavelengths for the 1/4-inch-diameter (6.3 mm) aluminum
(6061-T6) bars are listed in Table 2.3. The observed values are about twice the
theoretical value at low velocities and are about 20% greater than the theoretical
value at the highest velocity. This difference is also attributed to variations in E,,.
At the lowest velocity for which buckling occurs, the axial smm at the impact end
is about 1%. Thus the averasge E, during buckling must be somewhat greater than
the value at 1% strain, and from Figure 2.30, this is substantially greater than the
indicatod slope for solid bars. From (2.3.19), this would result in a longer half-
wavelength. At the higher velocities, the strains are higher, and the average value
of E, during the buckling motion is closer to the value used to calculate the
theoretical half-wavelength. Thus, at these strains, the observed half-wavelengths
are in better agreement with the theoretical value.
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Table 2.2

ﬁALF—WAVELENGTHS OF 6061-T6 ALUMINUM BARS OF 0.454.INCH-DIAMETER?

Decrease  Axial

Observed Half-Wavelength (inches)

Velocity in Leagth Strrin®
Rod (ft/sec) (inches) %) A

AR-1 ~ 70 0.1} 28 130
AR-2 - 0.12 32 120
AR-3 -~ 150 0.12 32 120
AR4t — 200 0.2 54 135

AR-SY ~ 275 0.46 106 098

AR-6 - 400 1.08 24 0.85
AR-9t 458 1.12 24 0.98
AR-12 461 1.20 26 0.70
AR-13 481 1.26 27 0.830
AR-8t — 520 1.52 34 0.68

Ay

0.98
097
1.03
1.00
0.95
0.8
0.52

1.28
1.25
0.95
0.90
0.80
0.88
0.57

0.80

0.75
0.85
1.10

As

0.82
0.38
1.03

1.08
1.33

Ag

i

.13
113

0.94

>

7 Average

1.30
1.30
1.20
1.20
0.96

0.90
0.96
113 093
1.05 0.95

-~ 086

1y

* One diameter from impact end. Axial strain is taken to be twice the diametral strain.

t Shown in Figure 2.22.
¥1 inch = 25.4 mm, 1 ft/s = 0.305 m/s.

Table 2.3

HALF-WAVELENGTHS OF 6061-T6 ALUMINUM BARS OF 0.209-INCH-DIAMETER?

Decrease  Axial

Observed Half-Wavelength (inches)

Velocity inLongth  Strain®
Rod (fVeee) (inches) (%)

B.7 79 0.01 096 ~

B-10 86 0.02 096 -~

B16 101 = 004 116 083
B-13t  us 0.07 1.7 093
B-s 126 0.09 30 o083
B-15 147 0.12 6 0m
B-11 164 0.14 “ 08
B-19 168 0.14 45 075
=4 N 0.16 43 on
4t 176 0.17 51 em
‘B3t 28 0.50 122 055
B-1t 342 0.67 170 055

Ay

>
1

0.3
Q55

>
»

0.38
0.53

>
“w

0.45
0.48

4

>
-

[ I I A

B |
L

093
0.75

* One diameter from impact end. Axial strais. is taken to be twice the diametral strain.

1 Shown in Pigure 2.23.
* 1 inch = 254 mm, 1 fUs = 0.305 m/s.

Aversge

0.9
0.86
0.85
0.7¢
0.60
0.7
0.78
0.75
0.67
0.55

I
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The half-wavelengths for the '2-inch-diameter (12.7 mm) aluminum (2024-
T3) tubes are listed in Table 2.4. The observed values agree favorably with the
theoretical value of 1.70 inch (43 mm).

Table 2.4

HALF-WAVELENGTHS OF 2024-T3 ALUMINUM TUBES
OF 0.454-INCH-DIAMETER AND 0.075 INCH WALL?

Decrease  Axial Observed Half-Wavelength (inches)
Velocity in Length  Strain®
Tube (ft/sec) (inches) (%) Ay Ay Ay A Averags
ATI-1Y 189 0.19 36 175 1.50 - - 1.63
AT1 2t 330 0.59 82 13§ 1.53 1.30 - 1.39
ATL-8 462 1.04 148 1.40 1.38 1.30 - 1.36
AT1-10t 492 1.25 176 128 1.80 1.60 1.85 1.63
AT1-9 576 1.48 20 0.93 1.68 2.38 - 1.66
ATI-11t 644 1.92 26 1.75 1.75 2.48 1.65 1.90
ATL-14 667 2.05 29 1.65 1.75 2.25 1.40 1.82

* One diameter from impact end. Axial strain is taken 10 be twice the diametral strain.
t Shown in Figure 2.24,
11 jnch = 25.4 mm, 1 ft/s =~ 0.305 m/s.

Another check on the theoretical model can be made by comparing the
theoretical and experimental buckling times. As indicated in Figure 2.29, a pre-
ferred wavelength is azparent at + = 5 and is weil established at 7 = 9. The
corresponding actuai times calculated from the last equation in (2.3.4) are indicated
in Table 2.5.

The bar shown in the process of buckling in Figure 2.25 exhibits observable
buckling at 110 us, and buckling is complete at 243 us. This is to be compared
with the calculated tinies indicated in the first linc of Table 2.5. The initia! buck-
ling motion occurs within the period during which selective magnification is
apparent, Figure 2.29a. Also, the byr<kling motion is complete within the time
required for the elastic wave to iransverse the bar and return to the impact end.
Thus the simple theory gives a buckling time that is in grnd agreement with the
experimental results.
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Table 2.5

THEORETICAL BUCKLING TIMES

Time t (us)
Specinien type tr=3 =6 Tt =9
Rod, 0.454-incii- 52 106 156
diameter (11.5 mm)
Rod, 0.2€9-inch- 24 48 12
diameter (5.3 mm)
Tube, 0.454-inch- 81 162 243

diameter (11.5 mm),
0.075-inch wall (1.9 mm)

The times in Table 2.5 indicate thai the small-diameter birs are the most
uastable, i.e., buckle fastest. The large-diameter bars are next, and the tubes are
the lesst unstable. This is consistent with the buckled forms in Figures 2.22 and
2.23, which show that, at comparable velocitics, the smail bars buckic more
viciently. To a lesser extent. at comparable velocities, the bars in Figure 2.22 show
more severe buckling than those in Figure 2.24.

Thus, the simple theoreticai model presented here accounts reasonably well
for the observed buckling. The predicted time scale and wavelengths are in essen-
tial agreement with the observations. The mosi significant festure yet to be
accounted for in the theory is the variation of E, during the buckling motion. This
variation has an important effect and has practical significance in dynamic plastic
flow buckling of rings and shetls from radial impuises. Theoretical and experimen-
tal results for a continuously decreasing hardening modulus are given for these
structural elements in Sectisas 3.4 and 3.5.
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3. DYNAMIC PULSE BUCKLING OF RINGS AND
CYLINDRICAL SHELLS FROM RADIAL LOADS

3.1 INTRODUCTION

This chapter presents theoretical and experimental results that can be used to
analyze pulse buckling of rings and cylindrical shells subjected to radial pulse loads
ranging from an ideul impulse to a step in radial pressure. It is shown thai under
impulsive and nearly impulsive loads, threshold buckling can be either elastic or
plastic, depending on the radius-to-thickness ratio of the ring or shell. This buck-
ling is closely analogous to the dynamic elastic and plastic-flow buckling described
for long bars in Chapter 2, and as in the bars, wavelengths of buckling are short
compared with the structure dimensions. Under long duration loads, buckling is
clastic because of the increased time for buckling to take place; the load need be
only slightly higher than the static buckling load.

For end-supported shells, these features of buckling near the two load dura-
tion extremes allow a great simplification in the analysis. Because the wavelengths
for impulsive buckling are short compared with the shell length, buckling from
impulsive loads is assumed to be independent of the axial coordinate. This gives an
adequate description of buckling in the main span of the shell, where the buckie
amplitudes are greatest and nearly constant along the length. With this
simplification, the complexities of plastic-flow buckling can be analyzed with a rea-
sonably simple theory. In buckling under long duration loads, the p;essures are
much lower and stresses are elastic. Then the end boundary conditions and the
variation of buckle amplitude with length are easily included by using elastic shell
theory. There is a range of loads of intermediate durations for which neither of
these simplifications is appropriate, but extrapolation of results from the impulsive
and long-duration load theories gives reasonable estimates of critical loads in this
range.

Dynamic plastic flow buckling of rings or long cylindrical shells from ideal
rxlial impulse is presented first, in Section 3.2, because for these structural ele-
ments the corresponding theory, in its simplest form, is simpler than for elastic
buckling. The simple form of the plastic theory is similar to that given in Section
2.3 for bars. The main difference is that the thrust results from hoop mode
corapression as the shell is brought to rest from the initial inward radial velocity,
rather than from axial impact. As for the bar, bending moments from strain har-
dening are crucial in the theory. For mathematical simplicity the strain-hardening
modulus is taken to be constant.
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Dynamic plastic flow buckling with a strain-hardening modulus that decreases
continuously with increasing compressional strain is presented in Section 3.4. The
variable modulus theory includes both elastic and plastic flow buckling. Sections
3.2 and 3.3 present theoretical analyses and experimental results that demonstrate
the phenomena of plastic and elastic buckling and the appropriateness and accuracy
of the theory. Section 3.4 then uses the theory to develop formulas for critical
radial impulse for buckling over the entire range of elastic and plastic flow buckling.
This range corresponds to buckling in very thin to very thick rings and shells; the
transition from elastic to plastic flow buckling occurs at a radius-to-thickness ratio |
of about 200 in engincering metals. Section 3.4 also contains a numerical analysis
of post-buckling response beyond strain-rate reversal, showing that the simple ;
analytical theory with no strain-rate reversal gives reasonably good predictions of :
both critical buckling modes and critical impulses for buckling.

P T VU

e A« ot TR

Section 3.5 combines the theoretical developments of thc earlier sections to
present the complete analysis of simply supported cylindrical shells subjected to
exponentially decaying and triangular radial pressure pulses ranging from ideal i
impulses to step loads.

; 3.2 DYNAMIC PLASTIC FLOW BUCKLING OF RINGS AND LONG
i CYLINDRICAL SHELLS FROM UNIFORM RADIAL IMPULSE

3.2.1 Introduction

The theory for this form of shell buckling is closely analogous to the theory
for bar buckling given in Chapter 2. The mathematical development is presented
such tha: the reader need not read Chapter 2 first; however, a reading of Chapter 2
is helpful because many of the buckling features described there carry over to the
shell. As for the bar, we describe theoretical buckling motion for both discrete and
random imperfections, but this time for imperfections in velocity rather than in
shell shape. Discrete imperfections are taken as a small change in velocity from
one value to another as one moves around the shell. Wrinkles are found to be
localized in the vicinity of the velocity change in a manner similar to the localiza-
tion of buckling near the end of a bar undergoing eccentric impact. Since experi-
ments and theory for shell buckling were performed before those for the bar, the
conceptual development in the original paper® is given in its entirety to retain the
element of discovery in the original work.

i T PR L i R

Cylindrical shells subjected to all-round impulsive external pressures of
sufficient intensity exhibit a characteristic behavior as indicated in Figure 3.1. The
circle represents the original size (outer surface), and the thick black somewhat
crumpled circle inside is the end of the shell. It shows a general radius reduction of
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FIGURE 3.1 TYPICAL BUCYLED SHAPE OF CIRCULAR CYLINDRICAL
ALUMINUM (2024-T3) SHELL SUBJECTED
TO A “UNIFORM’ INWARD RADIAL VELOCITY

about 8% and is wrinkled in a manaer sufficiently reguiar to permit a count of the
number of crests and troughs. Ths number of crests so counted is 16. The gray

band inside is the interior surface, the white center being the open far end of the
shell.

Experimental results of this kind aré obtuined with a raproducibility indicating
a characteristic form of dynamic plastic buckling. This section presents a theory of
the formation of the wrinkied shape, based on the dynamics of a metal shell that
deforms plastically with strain-hardening (the stress requited i0 mainiain flow
_increases as the flow proceeds). This property is crucial to the theory prese:ited




g RS A At i 07 o ae et e

18

here, a definite buckied shape being predictable oniy when it is present.’ Compari-
son of such predictions with several experimental resuits for a range of dimensions
and materials is given later. The agreement suggests that the main fsatures of the
buckling process are satisfactorily represented in the theory.

3.2.2 Postulated Character of the Motion--Dynamic Flaw Buckliag

We consider a cylindrical shell loaded in such a manner that ell elements
receive a large initial radial velocity simultancously. In the absence of imperfec-
tions, the material flows into a uniform cylindrical sheli af smaller radius (and
thicker wall) uatil the initial kinetic energy has been absorbed in the work of plastic
deformation. But with the inevitable small imperfections in the uniformity of ini-
tial velocity round the shell and the imperfections in the material properties and the
shape, there will be perturbations from this uniform converging motion. If a smal!
part of the circumference begins to lag behind the remainder, its curvature will
therefore be increased and the action of the compressive circumferential stress will
be to encourage it to lag behind still more.

If the material is perfectly plastic, the steady increase of circumferential
compressive strain at all points of the wall thickness implies an unchanging plastic-
flow stress, and this means that a perturbational change of curvature induces zero
bonding moment. Then there is no resistance to the perturbational lag already
mentioned, nor to a perturbational acceieration of an element that happens to bend
the other way. It becomes evident that the uniform converging motion is simply
unstable. In fact, an initial attempt to construct a theory for the perfectly plastic
material led to essentially divergent series for any time, and so to the reelization
that the actual motion depends crucially on strain-hardening. This aspect becomes
clear in the analysis to be given, leading to series that begin like divergent series
but, in virtue of the character of the later terms, are in fact convergent.

It would complicate matters unduly to include all sorts of imperfections
together. Instead, the basic problem is taken as that of a geometrically and materi-
ally perfect cylindrical shell, with a slight imperfection in the uniformity of the ini-
tial velocity. There is consequently departure from the circular form throughout
the motion, but this is regarded as always small. Thus at two points A and B on
the outside and inside, respectively, in Figure 3.2, the circumferential strain is

*Two other plastic properties that can give a definite buckied shape are associated with biaxial plastic-
flow and with an increass in stress with strain rats. These ate considered in Chapter ¢. The shells
dascribed in the pressai section are long enough that axiat flow can be neglected, nndminmeclm
are small for the preseat shetl masetials.
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always supposed to increase during the flow, but at B it increases more rapidly than
at A because of ihe slight curvature perturbation. On the stress-strain curve in Fig-
ure 3.2, the repressntative points A'B' are both moving to the right, with A’ lagging
behind B'. The stress-strain curve is tcken as the two straight lines OC and CD,
with slopes E (Young's modulus) and E, (strain-herdening modulus). Because of
the difference of circumferentia! stress betwesn A' and B', there is bending moment
M in the section AB of the shell, and it is related to the curvature perturbation by
the simple proportionality of clastic bar theory, using E, instead of E. Considering’
unit axial length regarded as & ring, one has in fact

M=Edk , «= [—-+wl ,'I-Tlftﬁ ',(3-2")

in which x is the curvature increase corresponding to a radial inward displacement
w(8), a is the radius of the shell, and h its wall thickness. Actually, of course, the
radius decreases and the thickness increases, but it turns out that the essentials are
adequately covered when the initial values are used.

o
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SA-3870-2

FIGURE 3.2 IDEALIZED STRESS-STRAIN RELATION AND ASSCCIATED
NOTATION
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As the flow proceeds, the mean circumferential stress o, is not quite uniform )

round the "circle," since w(@) is not quite uniform. This is neglected and the cir-
cumferential force o yh is treated as uniform. Its magnitude increases as the flow
proceuds, in virtue of the strain-hardening. The slope of the line CD; however, is
small compared with that of OC for the materials of interest. Accordingly, the cir-
cumferential compressive stress is taken as constant, at a mean level such as S/h in
Figure 3.2. There is then a constant circumferential force (per unit axial length)

. throughout the inward motion.

3.2.3 Equations of Mation

Neglecting rotary inertia, one obtains from the element of the rina‘ (urit axial
length of shell) in Figure 3.3

Q=M

Q being the shear force and dA the arc element corresponding to d@, subtending

now the angle dé at the center of curvature.

The dynamical equation for the radial motion is, with m for mass per unit run
of circumference and t for time,

9 8¢ _ _ 8w
Y +S N m Y (3.23)

FIGURE 3.3
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and for the curvature

% _1 |
X " + x (.2.49

Putting Equation (3.2.4) in Equation (3.2.3), eliminating Q by means of Equation
(3.2.2) and then M by means of Equation (3.2.1), one finds that w satisfies the
equation

1:.:1 [::: o'wl N sl L [ ,,” - - 2s)

80’ 0
It is convenient to change to dimensionless inward ndm displacement and

w - /'__53‘. -l E bt
u - T p— t ivi Palirai 3.2.6)

where p is density, and to introduce the dimensionless constant

time

a2 S _ o
- e = — 3.2.7
8? EJ 12 g 12 B.h’ 3.2.7

where ¢ = S/h is approximately the yield stress in simple compression. Then
Equation (3.2.5) can be written in the form

g“: + (1 + sd alu + sy + ::‘; 32 3.2.8)

This is for a ring that initially is perfectly circular. If instead it departs from the cir-
culsr form by an initial "displacement” w;(0) in the unstrassed state, and if one uses -
w(0,) now for the additional inward radial displacement during the motion, Equs- .
tions (3.2.1), (3.2.2), and (3.2.3) are unchanged, but Equation (3.2.4) becomes

I: ‘ ‘, [-o—.-:- + l] (w, + w) (3.2.9

and retaining Equations (3.2.6) and (3.2.7) with the new meaning of w and u,
Equation (3.2.8) changes to

(A} g2 3 [ L. ﬂ'i]
Dt asa Ih 4+ l{1+ w+ =3 6210
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Equation (3.2.10) will be used in Section 3.4 to examine the relative importance of
shape and velocity imperfections. In analyzing the present experiments, ws are
concerned with the effect of velocity perturbations from explosive loading discon-
tinuities. Hence imperfections in initisl shapc are not considered further here, and
Equation (3.2.8) is taken as the basic equation.

3.2.4 Perfectly Circular Ring, Almest Uniform Initial Radial Velocity

Since the wrinkling, expressed by the depeadence of w on 0, is being regarded
as a perturbation of the uniformly converging motion of the perfect ring with per-
fectly uniform radial displacement at all times, it is convenient to begin with a
particular solution, u (1‘) of Equation (3.2.8), which is independent of 4. It is a
solution of

d - —g?
| o + shy 8 (3.2.11)
and therefore is of the form
uy(r) = =1 + Apcon st + B, sin sr (3.2.12)

If the initial impulsive velocity is Vo

IR o IRARVE

- / m _ [1%p s
Ve VO E.‘ JB. h Vg 3.2.13)

and taking u,(0) = 0, Equation (3.2.12) becomes

%

Writing

ur) = =1 + cos or + ? sin or (3.2.14)

This is the unperturbed motion. It proceeds until i, (r) = 0, the dot indicating
8/8r. Thus the duration is given by the smallest root of

tan gv = -?- 3.2.19

A b
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This will provide an approximation (o the duration even when slight wrinkling
occurs. It corresponds simply to the absorption of the kinetic energy as plastic work
in the shortening of the citcumference, and this shortening is not influenced to the
first order by the slight wrinkling.

Retaining the initially perfect circular ring, one now considers a slightly non-
uniform initial velocity given by the Fourier series

lﬁl -V, [1 + 2 (aq c08 N9 + B, sin no)] (3.2.16)
at t=0 =3 A i

u(0,0) = v, ll + i (ay coar nd + B, sin n&)' (3.2.17)
) .

{

Terms with n = 1 are omitted since, to the present order of accr+acy, they do not
contribute to deformation of the circular shape. For the appropriate solution of
Equation (3.2.8), the particular solution Equation (3.2.14), together with the com-
plementary solution, is taken in the form

u=- f,z [_f_ﬂ(") cos n@ + g.(r) sin n6) (3.2.18)

A

The homogeneous form of Equation (3.2.8) requires f, to satisfy
f, + [0*— 0?1 + s?) + s?lf, = 0O (3.2.19)
and g, must satisiy the same differentis! equation.

One of the princiyai points of the present theory of the dynamic buckling pro-
cess emerges here. The coefficient of f, in Equation (3.2.19) is positive, and 30 f,
and g, are circular fu:ctions of =, provided n is large enough. But for several of
the smaller values of n the coefficient is negative, and f, and g, are hyperbolic
functions, with the possibility of attaining large values within the duration of the
motion. The coefficient of f, in Equation (3.2.19) can be written as

pd = (n? - 1)(n? - §?) (3.2.20)

with the properties
p3 <0 if n<s
(3.2.21)

p2>0 if n>s

¥
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As an example of the order of magnitude to be expected for s, one may take
the following values, which are representative of the aluminum atloy shell of Figure
31, '

E, =4 x 10°psi = 2.8 GPa, a =6 x 10* psi = 0.41 GPa

| (3.2.22)

a = 1.46 inch = 37 mm, h =0.077 inch = 2.0 mm, a/h = 18.9

Then Equation (3.2.7) gives s = 25.4. Thus f, and g, will be hyperbolic functions
for 2 € n € 25, and they will be circular functions for n 3 26. In the tests
describad in a later section, s ranged from 13 to 75.

Writing ' r for the greatest integer less than s, p? may be redefined
conveniently as

pl = (n*-1)(s*-n?) whenan <
pl = (22— Dn?—~s!) whenn>r + 1 (3.2.23)

The general solution of Equation (3.2.8) can then be put in the form

Vo .
u--1+coss-r+—s-sms'r
T
+ § A, cosh pr + B, sinh pyr)cos o
=2

+ (C, cosh p,r + D, sinh p,r)sin né}

+ Y, [(A, cos p,r + B, sin p,ricos no
amrtl

+ (C, cos pyr + D, sin p,r)sin no] (3.2.24)

meet the initial velocity prescribed ss Equation (3.2.17), one must take

B, = Vol , D, = voBa

Pa Pa

3.2.25)
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i The final solution is then

v
u--l+eossr+—sgsins'r

v
+ vy E (a, cos n0 + B, sin nd) L sinh p,v
™2 Pa

WARE SN} SE I p

+ vo 2, (a,cos nd + B, sin nb) L sin p,r (3.2.26)
-l Pa

In tests aiming at uniform impulsive velocity round the circumference (a uni-
| form thickness of explosive all round), the coefficients a,, 8, will all be quite
{ small in comparison with unity. The possibility of observable wrinkling must then
come from the hyperbolic functions sinh p,r in the terms in the second line of
Equation (3.2.26). It is convenient to refer to these terms as the "buckling terms."
! If the strain hardening is reducea (E, — 0), s in Equation (3.2.7) increases
without bound and hence r also increases. Ultimately all the terms are of the
hyperbolic type and the convergence of the series is lost. Hence a solution is
obtainable only for E, > 0.

3.2.5 Strain Rate Reversal

The foregoing theory is not valid after strain reversal begins. To determine
this limit, we examine the strain implied by Equation (3.2.26).

For points on the outside and inside surfaces, tie circumferential compressive

strain is, respectively,
‘ _Ahllw _ b 8w hllw | h 8w
R | Y T [ e

Strain reversal bagins when one_éftheumamuimum positive value and
then decreasss. Hence oaly the second factor in esch expression is examined. In
dimensioniess terms these factors are

o 3 -'%‘-'!;—'-’- (3.2.28)

o ——
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and from Equation (3.2.26) these are representable, until reversal occurs, as

- h 8% — h =
4, — = = ul®,7) _ ——v (a, cos no
+ 20 90 + 2a onz_2 "
2 f
+ B, sin nd) %—- sinh |+ (3.2.29)
n

where,
for 2 € n <, sinhp,r is used with p? = (n? - 1) (s~ n?)

and (3.2.30)
for n 2 1+ 1, sinp,r is used with p2= (n? — 1)(n? - s?)

In the calculaied results to be given, the strain history was traced by evaluation of
Equation (3.2.29) for various times.

3.2.6 The Ruckling Terms--Representative Numerical Cases

In the result Equation (3.2.26) the buckling terms in the first series consist of
velocity perturbation terms magnified by fsctors p;! sinh p,r. Regarding
P2 sinh? pyr, with p2 = (n? — 1)(s?2 — n?, s a function of a continuous vari-
atie n?, for 1 < n < s, it approaches the value 72 for n — 1, and again for n —
s. Its derivative with respect to n? vanishes where

dp,

dn? =0

(tanh pgr — pgr)

and therefore only where dp,/dn? = 0. This occurs whers

2

n? = nf = % 2+ 1) (3.2.31)

and the corresponding maximum of p? is

(0D g = %— * - 1)? (3.2.32)

For the shell specified in Equaiion (3.2.22) the value of n, obtained from
Equation (3.2.31), is very nearly 18, and the value of (p,) .« fiom Equation
(3.2.32) is nearly 324,
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A representative value for the iritial velocity Vg is 695 ft/s = 212 m/s. The
density p, occurring in Equation (3.2.13), corresponds to 2700 kg/m? for alumi-
num. Then the duration of the motion is found from Equation (3.2.15) as 7, =
0.02, corresponding to 48 x 10~%s. The final inward displacement (in the absence
of perturbations) is 0 22 inch = 5.6 mm. (Values of p,7! sinh p,r for = 0.02 are
shown later in Figure 3.11.)

Since the nonuniform "error” of tae intended aniform velocity in the tests is
not known, it is not possible to predict from the iheory what wrinkled forms to
expect. Different tests have different "errors,” but the deformed specimens have a
common characteristic--several wrinkles of rather short length compared with the
circumference. Accordingly calculated results were obtained for several different
velocity distributions, the departures from the mean being +5%. The calculations
are leter compared with experimental observations.

The first of these, shown in Figure 3.4 (departure from mean only), is the
"narabolic distributica”; if the circle is developed, the velocity curve becomes two
parabolic arcs.

€A-3870-9

FIGURE 34 PARABOLIC VELOCITY PERTURBATION

Curvature is discontinuous at top and bottom
crossings.
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The series for u(9,0) takes the form

u(0,0) = Vy [1 ————— :

+ -5‘7 cos 56 — ” (3.2.33)

and corresponds to Equation (3.2.17) after the unimportant term in cos 9 has been
discarded. The manner ia which the individual buckling terms in the displacement
Equation (3.2.26) grow with time is shown in Figure 3.5, to be read only for the
odd integer values of n. Growth is at first slow (lower curves), then rapidly
accelerates through the increase of sinh p,r. The term having n = 17 is the most
magnified, i.e., has the greatest value of p,;! sinh p,7, and this term and its neigh-
bors show the most rapid growth. Lower terms in Figure 3.5 have larger ordinates
because of their larger values of a,, from Equation (3.2.33). The last buckling
term has n = 25, thc term for n = 27 having sin p,7 not sinh p,r. Its magnitude
remains insignificant, the same being true of all further terms. The curve for r =
0.020 is subject to slight correction for the onset of strain reversal and is included
because it suggests rapid deveiopment of the wrinkling at the time strain reversal
begins. The higher (broken-line) curve for r = 0.022 emphasizes this suggestion.

Go'—l'l'l‘l"lrl‘l'rflr['ITTfoT'1
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FIGURE 3.5 GROWTH OF FOURIER COEFFICIENTS OF BUCKLING
TERMS WITH TIME, FOR THE PARABOLIC VELOCITY
PERTURBATION OF FIGURE 3.4
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The calculated form of the ring (with radial displacement greatly exaggerated)
is shown in Figure 3.6, for + = 0.018. Figure 3.7 shows the same curve on the
developed half-circle (upper half of Figure 3.6), together with the corresponding
curves for times 7 = 0.01, 6.016, and 0.020. The maximum displacement before
strain reversal begins (r = 0.018) is u = 1073, and corresponds to w = 1.5 mils
(38 um). The angle between the two major crests between 0° and 30° is about 20°.

The second type of velocity variation, shown in Figure 3.8, is called "tra-
pezoidal" from the form it takes in a developed diagram. The transition from V(1
— 0.05) on the left to V(1 + 0.05) on the right occurs in an arc of 10°. Figure 3.9
shows the calculated wrinkled form for + = 0.008. The general resemblance to
Figure 3.6 is striking. Pronounced wrinkling occurs where the velocity transitions

occur in Figure 3.8 at top and bottom.

GA-3870-8

FIGURE 3.6 BUCKLING DISPLACEMENT AT 7 = 0.018
FOR THE PARABOLIC VELOCITY
PERTURBATION OF FIGURE 3.4
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FIGURE 3.7 DEVELOPMENT OF BUCKLING DISPLACEMENT WITH TIME
FOR THE PARABOLIC VELOCITY PERTURBATION
OF FIGURE 34
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FIGURE 3.8 TRAPEZOIDAL VELOCITY PERTURBATION
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SA-3870-8

FIGURE 3.9 BUCKLING DISPLACEMENT AT 7 = 0.008
FOR THE TRAPEZOIDAL VELOCITY
PERTURBATION OF FIGURE 3.8

In these two cases, the parabolic and the trapezoidal, the velocity perturbation
had a discretely specified shape. The Fourier coefficients of the initial velocity, a,,
diminish with n, and the phase of each harmonic is known. A velocity perturbation
in which the coefficients all have the same amplitude but are random in phase is
similar to the random perturbation discussed in reference to shape imperfections in
Section 2.2.6. Figure 3.10 shows three examples of calculated buckled forms for
the shell obtained by taking 25 harmonics (1 < n < 25), all with the same ampli-
tude for a,. In each, the phasing of these harmonics was chosen at random.
Terms in the initial velocity distribution beyond n = 25 have a small effect on the
buckled form because they are not amplified by the buckling motion (as indicated

in Figure 3.11). A more detaiied discussion of buckling from random impe:rfec-
tions is given in Section 2.2.6.
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GA-3570-10
FIGURE 3.10 BUCKLED FORMS FOR “RANDOM PHASE" VELOCITY
PERTURBATIONS

Each form is for a different random phasing of the harmonic
comporents of the velocity perturbation.
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FIGURE 3.11 MAGNIFICATION FACTOR FOR “RANDOM
PHASE"” EXAMPLES
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3.2.7 Experimental Technique and Characteristic Resuits

The buckled cylinder of Figure 3.1 was produced with the experimental
arrangement shown in Figure 3.12. Enclosing the cylinder in Figure 3.12 is an
attenuator of 1/4-inch-thick (6.3 mm) neoprene foam and a layer of explosive.
The attenuator, which is necessary to prevent the cylinder from spalling, extends
beyond the end of the cylinder to provide support for the explosive. The detonator
starts from an electrical signal and is connected to the main charge by several strips
of explosive. Detonation fronts initiated in the main charge by the strips of explo-
sive expand from the initiation points and coalesce into a single ring-shaped detona-
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FIGURE 3.12 EXPERIMENTAL ARRANGEMENT
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tion front in the "run-up" part of the main charge. The detonation front, which is a
few mils (= 100 um) wide, subsequently sweeps over the cylinder at a rate of
23,300 ft/s (7106 m/s).

A shock wave is induced in che attenuator by the detonation front and is
transmitted from the attenustor to the cylinder, imparting 1o it an impulsive veloc-
ity of about 500 ft/s (150 m/s). If this velocity were imparted to the cylinder
instantaneously by the shock wave in the cylinder, the cylinder wall would turn
through an angle of about 1.5°. Since several reflections may be required before
this velocity is achieved, the actual shape of the specimen in the region of the
shock front is something between a cylinder and a cone of 3° included angle.

Maximum variations in the thickness of the ¢xplosive are from 2% to 10% for
charges from 15 to 60 mils thick (0.4 to 1.5 mm), the larger variations going with
the thinner charges. The variations in thickness are gradual except across joints.
Variations in the thickness of the explosive and the uncertainty in the impulse
deveioped by the explosive psr unit thickness combine to give an uncertainty of
about 10% in the impulses imparted to the cylinders. The joints in the attenuator
and the explosive produce unknown perturbations in the velocity. Since they could
not be eliminated, the locations of the joints were recorded and were taken into
account in the analysis of the dcta.

One of the characteristic features of the buckling phenomenon is the repro-
ducibilitv of the number and the amplitude of the crests, which, according to the
theory, depend mainly on the nonuniformities in the velocity distribution. Figure
3.13 shows two cylinders of the same material and the same initial dimensiors that
were subjected to nominal uniform radial velocities of 650 ft/s (198 m/s). The
cylinders were nominally 3 inches (76 mm) in diameter and 6 inches (152 mm)
long; the wrinkled shapes of Figure 3.13 represent central cross sections. Except
near the joints, the cylinders are similar in shape. The plots around the cylinders
show the crests more clearly. The quantity plotted is the square root of the slope;
this was chosen to bring out the smaller crests. The limits on the points indicate
plus and minus one standard deviation. The number of major crests, obtained by
counting all the way around or by determining a representative crest-to-crest dis-
tance from a portion of the circumference having a succession of well defined
crests, is about !8 for both cylinders. Cylinders of other materials and other
radius-to-thickness ratios exhibit a similar degree of reproducibility.

Figure 3.14 illustrates the effect of radius-to-thickness ratio a/h on the buck-
ling phenomenon. As would be expected, the number and amplitude of crests
iricrease with a/h.
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FIGURE 3.13 REPRODUCIBILITY OF BUCKLING OF ALUMINUM
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3.2.8 Comparison of Experiment with Theory

A precise comparison of experiment with theory is not possible because the
nonuniformities in the experimental velocity distributions, which are required for
the theory, are unknown. Instead, the number of crests observed is compared with
a theoretical limit that depends on the dimensions and properties of the cylinders
and is independent of the nonuniformities, and qualitative comparisons are made of
experimental and theoretical amplitudes and permanent strains.

To compare the experimental findings with theory, it is necessary to know the
flow stress o and strain-hardening modulus E, for the cylinder materials. These
data were not found in the literature, so tests were undertaten to obtain them.
Although it would be desirable to have the data for compressive stresses and high
strain rates, expediency required that the tests be miade under tensile stresses at
ordinary strain rates. Test specimens, consisting of axial ;irips from actual cylinder
stock, were cut to ASTM dimensions and were tested on a conventional tensile
testing machine. The results of the tensile tests, corrected to give true strain, are
plotted in Figure 3.15. To the accuracy of the data, the curves do not depart seri-
ously from the simple model of Figure 3.2. More accurate stress-strain curves,
required for the variable modulus theory, are presented in Section 3.4. Values of
the flow stress o taken at 2% strain and the strain-hardening modulus E, obtained
from the flat parts of the curves are listed in Table 3.1. The materials tested were
chosen to give a wide variation in o and E,, and hence in y/o/t,. The latter
varies from 0.37 for 2024-T3 aluminum to 0.69 for copper.

Table 3.1

STRESS-STRAIN PROPERTIES

o Eh
Material (10 psi)  (10%psi) ~Jo/E,

Al 2024-T3 56 4.1 0.37
Al 6061-T6 44 1.3 0.58
Steel 1015 102 2.5 0.64
Brass 71 2.8 0.50
Copper 57 1.2 0.69
Steel 4130 123 39 0.56
Mg AZ31B 30 1.5 0.45
1 psi = 6.9 kPa.

'Curves for steel 4130 and ‘nagnesium AZ31B are included although no buckling experiments were per-
formed with these materials,
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In Figure 3.16 the observed number of crests, determined from plots such as
shown in Figures 3.13 and 3.14, is plotted against n;, the most magnified com-
ponent of the buckling terms [see Equation (3.2.26)). Additional data on the
cylinders are give. in Tabic 3.2. The theoretical upper limit on the number of
crests is indicate. by the line N = n,, since the greatest integer less than s is the
last of the buckling terms. The data agree with the theory in that all the points lie
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Cylinder
Number

19
16
23

25
26
27
28
29

33
34
36
43

54
58
57

. 62
63
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Table 3.2
NUMBER OF CRESTS
Radius Thickness Number
a h of Crests
Material (inch) (inch) a’h N

A12024-T3 1495 0.151 9.9 12
1.495 0.100 15.0 12 i
1.495 0.077 19.4 16

A16061-T6  1.487 0.151 9.9 9
1.488 0.101 14.7 15
1.488 0.101 14.7 16
1.490 0.076 19.6 18
1.490 0.076 19.6 18

Steel 1015 1494 0144 104 11
1495 0089 168 15
1494 0066 226 16
1493 0042 356 28

Brass 1.495 0.113 13.2 13
1.495 0.093 16.1 16
1.498 0.069 21.7 25

Copper 1.429 0.146 9.8 12
1.430 0.095 15.0 14

1 inch = 25.4 mm.
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FIGURE 3.16 NUMBER OF CRESTS N VERSUS MOST MAGNIFIED HARMONIC n,

In the vicinity of n, = 10, the data lie close to the line N = n,. For larger
values of n; the number of crests observed is considerably less than n;. This
behavior is to be expected if the Fourier coefficients a,,, B,, of the initial velocity

distributions decrease fairly rapidly with increasing n, as for slowly varying nonuni- .

formities (see the parabolic-perturbation example). As n; increases, buckiing terms
of higher order are added to the series of Equation (3.2.26). This could cause an
increase in the number of crests, but not so great as the increase in n; becanse of
the diminishing a,, B8,. Thus the data of Figure 3.16 are in accord with the theory
in this respect also.

As a further check on the theory, we undertook some exploratory experi-
ments in which velocity perturbaiions of known amplitude and frequency, in
addition to the unknown variations, were superimposed on the “uniform" initial
velocity. The known perturbations were obtained with strips of metal foil placed
adjacent to the explosive. It was found that six strips of copper foil 2 mils (50 um)
thick and 1/8 inch (3.2 mm) wide spaced uniformly around the cylinders, which
prodiice a local increase in velocity of approximately 20%, changed the number of
crests from 16 of 8 mils (0.20 mm) average amplitude (Cylinders No. 26 and 27 of
Table 3.2) to 6 of 80 mils (2.0 mm) average amplitude. Thus this enforced
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nonuniformity is sufficient tc overcome the unknown variations and gives an upper
limit on ihe magmtudes of the unk:iown varistions. Since the unknown variations
ir initiai velocity would be expected to consist of several compornents, the ampli-
tude of the individual components shculd bc less than 10%.

In additicn to the number of crests, the amplitudes of the crests provide
another readily observable quantity to compare with theory. However, as with the
number of crests, a precise comparison is not to be anticipated since the magni-
tudes of the nonuniformities are unknown. An added comglication is the fact that

~ crests of amplitades greater than a few mils develop strain reversal and hence go

beyond the range of the present theory.

In Table 3.3 maximum amplitudes (peak to trough) and average amplitudes of
the crests are given for the cylinders of Table 3.2. The maximum amplitudes occur
at the explosive or attenuator joints and hence are of only passing interest. Exclud-
ing these, average amplitudes range from 2 to 22 mils (0.05 to 0.56 mm).

Table 3.3
AMPLITUDES OF CRESTS
Thickness Thickness . Increase  Increase
of of initisl  Maximum  Average! in in
Cylinder Explosive  Cylinder  Velocity Amplitude  Amplitude Thickness Length
Material Number (mils) (mils) (ft/s) (mils) (mils) (%) (%)
Al 2024-73 19 347 151 670 k1 7(6) 6 20
16 205 100 590 23 2(8) 15 1.2
23 200 77 80 40 8(6) 9 18
Al 6161-76 25 273 151 540 4 1M 5 -
26 238 101 5% 4 8(11) 7 1.8
1 220 1ot 620 §S 8(11) 0 19
28 170 76 650 100 10(9) 9 1.7
29 16.4 76 40 202 15( 9 1.4
Steel 1015 Kk} 6l0 144 420 30 6(10) 5 -
34 4.7 ki 500 S0 13(12) 8 2.2
36 330 66 490 9% 2201 1 -
43 16.0 42 3 129 9(20) 5 -
Brass 54 240 113 330 41 9{10) 4 2.1
s5 320 93 320 4 6(13) 4 2)
57 316 69 430 210 19(9) 7 kN |
Copper 62 45.0 146 270 30 8(8) 5 1.9
63 16.0 95 150 6 2(9) k) n4

* Peak to trough.

t Peak to trough, effects of joints not incindes.
Number in patenthesis indicates number of crests in average.

I mil = 0.025 mm, 1 ft/s = 0.305 m/s.
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The amplitudes of the crests as a function of time for the parabolic velocity
perturbation are shown in Figure 3.7. The maximum amplitude (peak to trcugh) as
strain reversal occurs is approximately 4 mils (0.1 mm, at r = 0.02). Many distur-
bances in velocity similar to the parabolic perturbation may be expected around a
cylinder in the experiments; hence the calculated maximum amplitude may be com-
pared with the average cbserved amplitude. The calculation for the parabolic veloc-
ity perturbation was made for Cylinder No. 23 (Figure 3.1), listed third in Table
3.3, The observed average amplitude is 8 mils (0.2 mm), and the calculated value
is 4 mils (0.1 inm). The difference may be differences in the actual and the postu-
lated velocity perturbations and in the assumed and actual material properties.

The permanent strain produced in the cylinders is given in Table 3.3. The
increase in thickness ranges from 3% to 15% and thc increase in length from 0.4%
to 3.1%. The increase in thickness calculated from Equation (3.26) for an initial
velocity of 635 £1./s (212 m/s) is 14%. This is to be compared with 9% observed for
Cylinder No. 2”. The difference may be attributed to differences in velocity pertur-
bations and materia! properties.

The observed strains provide a means of checking initial velocities. The
energy absorbed (per unit area) in plastic work in increasing the thickness of the
shell is oeh, where o is the flow stress, € is strain, and h is wall thickazss. If this
is equated to the initial kinetic energy (per unit ares), one obtains for the initial

velocity
V = -,/ 20¢ (3.2.34)
P

Values of V from Equation (3.2.34), given in Table 3.3, are from 20% :0 40% less
than tre velocities calculated from the explosive thickness. This difference is due
partly to neglect of the energy absorbed in plastic bending and ,jossibly to the
development of reactions in the shell during Inading. The latter effect depends on
the ratio of the duration of the load to the response time of the shell. For the
aluminum and steel shells of Table 3.3, the response time (quarter period) of the
fundamental extensional mode is about 10 us. The duration of the load may be of
the same order of magnitude. The difference may also be due in part to an increase
in yield stress with strain rate.2
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3.2.9 Buckling Threshold

A lower limit on the velocity, or impulse, necessary to produce buckling can
he obtained by equating the initial kinetic energy of the sheil to the strain energy
reguired to reach the yield stress. For thin shells, the kinetic energy per unit
volume of the shell is pV4#/2 and the strain energy per unit volume is o-,’/ 2E.
Equating these yields

Vo me —L (3.2.35)
pc

where ¢ = E/p is sound speed. The expression for the impulse I (per unit area)
corresponding to Vg is

[ Ec’i’- (3.2.36)

Equation (3.2.35) indicates that the threshold velocity depends only on physi-
cal properties of the shell and not on its dimensions. The threshold impuise {Equa-
tion (3.2.36)] depends in addition on the thickness h of the shell but not on the
radius. Table 3.4 gives the threshold velocity and impulse for several metals.
Threshold velocities range from 40 to 150 ft/s (12 to 46 m/s). Threshold impulses
for h = 5 mm range from 1200 to 4400 ubar-s (120 to 440 Pa-s).

Table 3.4
BUCKLING THRESHOLDS
Sound Yield .
Density Speed  Stress Vo |
Material  (kg/m’) (m/s) (MPa) (m/s) (Pa-s)

Al2024-T3 2800 5100 386 27 <70
A16061-T6 2800 5100 304 21 210
Steel 1015 1900 5000 104 18 180

Brass 8500 3500 490 i6 160
Copper 8900 3500 393 13 130
Magnesium 1700 4700 207 26 260
Titanium 4500 4300 897 46 440

Beryllium 1800 2600 276 12 120

* For a shell of surface density | g/cm®
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The development of wrinkles of flow buckling depends on the nonuniformi-
ties in the initial velocity. For impulsive loads obtained with sheet explosive, it was
found (Table 3.3) that velocities of several hundred feet per second were required
to produce wrinkles with amplitudes of 5% 1o 10% of the radius. Hence the thresh-
olds estimated from Equations (3.2.35) and (3.2.36) are quite conservative. In Sec-
tion 3.4, more accurate estimates are given that aliow a small amount of buckling to
take place so that reasonable assumed amplitudes of random imperfections lead to
just perceptible buckles. In this case, the threshold velocity increases with h at
fixed radius. For the relativeiy thick sheils just discussed, the threshold impulse is
found to be as much as 10 times the elastic limit impulse given by Equation
(3.2.36) (see Figure 3.32).

3.3 DYNAMIC ELASTIC BUCKLING OF RINGS AND CYLINDRICAL
SHELLS FROM UNIFORM RADIAL IMPULSE

3.3.1 Introduction

The preceding section showed that when rings or long cylindrical shells are
projected inward by an intense impulsive pressure, a characteristic form of dynamic
wrinkling occurs at wavelengths determined by the material tangent modulus in
plastic radial flow. In experiments on very thin cylindrical shells® (radius-ts-
thickness ratio 480, compared with 10 to 36 in the preceding section), observed
buckle wavelengths were six times those predicted by the plastic flow buckling
theory. In these shells it was found that the duration of elastic mction was long
enough that elastic buckles formed with amplitudes much iarger that any initial
imperfections at the plastic wavelengths. The elastic buckling also quickly reduced
the average hoop stress so that radial plastic flow, which would have occurred in the
absence of any velocity or displacement perturbations, never occurred. As a result,
buckling was restricted to the elastic modes. Radial impulse above that for elastic
unperturbed hoop motion served only to provide energy eventually absorbed by
plastic hinges at the elastic buckle wavelengths.

In this section we present a theoretical analysis of dynamic elastic pulse buck-
ling. Because the rotion is elastic, another form of dynamic buckling can also
occur, called autoparametric vibration buckling. This is a special form of vibration
buckling (described in Section 1.1) in which elastic vibrations in the hoop mode
become unstable. At radial impulses weli below that required to produce pulse
buckling wrinkles as just described, the shell vibrates in and out in the hoop
(breathing) mode. Because of inevitable imperfections, flexural modes with natural
frequencies near half that of the hoop mode begin to grow in amplitude by extract-
ing energy from the hoop mode. Eventually, nearly all the energy can be
transferred to a flexural mode. This buckling motion is also analyzed in this sec-
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tion. It is the only form of vibration buckling analyzed ir. the monograph. Our
purpose is to show the transition between vibration and pulse buckling as the
impulsive loading is increased.

3.3.2 Theory of Elastic Shell Motion

As in Section 3.2, we consider a cylindrical shell with an inward initial radial
velocity imparted to each element uniformly around the circumference. Flexural
perturbations are taken in the form of initial imperfections in shape. The relative
importance of velocity and shape perturbations is discussed in Section 3.4. To treat
shape imperfections, we express the total radial and tangential shell displacements
w* and v* in the form

w0, = wig, + wih) (3.3.1)

vie,0 = v, + v (3.3.2)

where 6 is angular coordinate, t is time, w(0,t) is radial displacement, measured
positive inward from an initial shape imperfection w;() in the unstressed shell, and
v and v, are similarly defined for tangential displacements.

The equations of motion are most conveniently derived by the Lagrangian
method. This also gives expressions for energy that are used later in discussing
energy transfer between hoop and flexural modes. For rmall displacemenrts, the
kinetic energy per unit length of shell is given by

2 2
- L 8v
T 2phajo' [ + lat n de (3.3.3)

where p is density, h is the wall thickness, and a is the radius of the middle surface.
It is convenient to introduce dimensionless quantities

w
at

{ = w/a , {i= wi/a
v =v/a , = vi/a (3.3.4)
T = ct/a

where

c= (E/p)? , E, =E/U-) (3.3.5)
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in which E is Young’s modulus and » is Poisson’s ratio. For rings, use E instead of
E,. The factor 1/(1 — »?) accounts for the zero axial strain constraint in a long
shell, as can easily be confirmed by deducing the relation between hoop stress and
hoop strain with zero axial strain. The result is ¢ = E,e. A more complete discus-
sion of elastic shell equations is given in Section 3.5. With dots indicating
differentiation with respect to 7, the kinetic energy is expressed by

1 T,
T = - Etha f Q@ + ¥?) do (3.3.6)
0

To find the strain energy, define z as the radial position of a shell fiber from
the middle surface. When an element of shell material (a + 2) dédz, per unit
length of shell, is brought to stress o from an initially unstressed state, its strain
energy is

dU = -%-o'e (a + 2) codz (G371

Substitution of ¢ = E,e into Equation (3.3.7) and integration over the shell
material volume gives for the total strain energy

E 2 2
v=-Eef ]/' e? dzde (3.3.5)
2 % w2

in which it has been assumed that the shell is thin enough to neglect z/a in compar-
ison with 1. With the thin shell approximation and with plane sections across the
shell thickness assumed to remain plane during flexure, the strain at each fiber is

€ = e, + 2« (3.3.9

where €, is the middle surface strain and « is its change in curvature. Substitution
of Equation (3.3.9) into Equation (3.3.8) and i.t:2gration over the thickness gives

2
U= 1 Eh I e2 + s%ak) a0 (3.3.10)
0

where a? = h¥12a2. With the shell assumed thin, a? << 1 so higher-orde
terms multiplied by a? are dropped; we retain for x only terms linear in the dis-
placements, as in simple curved-bar theory. Because of linear superposition, the
initial imperfections are therefore not involved in the curvature change, so x is
given simply by

dw

1 | -
X ;_i IW + w 5 @+ 0 (3.3.11)
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For the middie surface sirain, however, terms up to second order for strain
and to third order for energy are retained, which gives the least modification to the
linear theory that can introduce interaction of circumferential force and flexure.
For use in the transition from vibration buckling to pulse buckling, terms to fourth
order for energy are also retained. Otherwise, the coupled equations are
unbounded for large values of the stability parameter p, as discussed later. The
nonlinear terms also introduce the initial imperfections into the strain and energy
expressions.

An expression fo' the middle surface strain is found from the differential dis-
placements shown in Figure 3.17. Points on the undeformed middie surface for an
initially perfect cylinder have polar coordinates a, 8. Points on the deformed mid-
dle surface have poiar coordinates 1, ¢. The radial displacement from an initially
perfect cylindrical shape is therefore

W = g --r (3.3.12)
and the angular displacement is
vV=¢ -0 (3.3.13)

For the small displacements to be considered here, the angular displacement is the
same as the dimensionless tangential displacement defined earlier, so the same

CEFORMED ELEMENT

UNDEFORMED ELEMENT

GA-3570-300

FIGURE 3.17 DIFFERENTIAL DISPLACEMENTS OF MIDDLE SURFACE
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symbol has been used for both. Differention of Equations (3.3.12) and (3.3.13)
gives "

dw _ _ & 4 _ g4 -
0 W e = 't (3.3.14)

The middle surface strain is the chenge in length of the element in Figure
3.17 divided by the initial length,

1 dar 2 dé Rl
SR PN P |

- -:T (r? + rip')V2 -

where primes indicate differentiation with respect to 8 and the bar is used to denote
the initially perfect shape. This is a familiar expression from differential geometry.
With Equations (3.3.12) and (3.3.13), it becomes

1/2
T L o2 + G- wia + va]" -
or

1/2
= tr+ a-pa+en] o (3.3.15)

in which { = w/a is used from Equation (3.3.4). Upon expansion to terms of
second order, we obtain finaily

=V — (- LU+ %c" (3.3.16)

This is the middle surface strain when the unstressed initial shape is perfectly
circular so that its points have coordinates a,8. The strain in going from an
unstressed state that is not perfectly circular, described by initial shape {;, ¢;, to a
deformed shape c', ¥*, is found by using either Equation (3.3.15) or Equation
(3.3.16) to calculate the change in strain between these two shapes. (More pre-
cisely, the strain is the change in length between these states divided by the
unstressed length, but elastic strains are very small so, as in our use of engineering
strain, the change in length basis can be neglected.) Thus, for the shell with initial
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shape imperfections, the middle surface strain is

W+ W) - @40 - @+ QW + W)+ 2@+ )

- [""i - - v+ ':12“ ¢l

which simplifies to
A R R VR YL IR R Iy T CERY)

With terms of fourth order involving the small imperfections neglected, sub-
stitution of Equations (3.3.11) and (3.3.17) into Equation (3.3.10) gives for the
strain energy

2
U= %E,haf l(w' -0+ W=

X (@2 - 2w+ 20— A - 208 (3.3.18)

+ Q' - —; D2+ a2 (" + D] do

Terms that account for ring imperfections are underlined by a single line, and terms
of fourth order in the displacements are underlined by a double line. It will be
shown later that the fourth-order terms can be neglected for small initial velocities,
but for larger velocities the theoretical coupled breathing and flexural motion
becomes unbounded without these terms.

The displacements are now expanded into Fourier series, whose coefficients
are to be taken as generalized coordinates.

{ = afr) + f la,(r) cos n@ + b,(r) sin no) (3.3.19)

n=1

¥ =3 lc(r) cos ng + dy(r) sin nAl (3.3.20)
ne=1|
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Since flexural wavelengths of interest are long compared with the wall thickness, it
is reasonable to neglect membrane stresses due to flexure so that we can impose
the inextensionality’ conditon ¢' = { — a,. Then ¢, = — b,/n and
d, = a,/n, and we omit terms for n = | because they represent a rigid-body
translation for the inextensional model. Similarly, for the imperfections we take

{ti= Y (5, cos né + vy, sin nél (3.3.21)

n=2

and ¢'; = {;. With these modifications, substitution of Equations (3.3.19)-
(3.3.21) into Equations (3.3.6) and (3.3.18) gives

- 24 L [nl+1ffa, oo
T - wk il + 3 X |25 ] [.., + b,,]] (3.3.22)
U = #Eha laf + % f [(n2 - D%? - (n? - 2)a,]

n=2

d _ 1w 314_ 4. ] "
x[a,",’-i-b,,l 2..2-'28“ 30 +4I[an+b:]
= i (n? - 2) (5,2, + 'ann) ‘ol (3.3.23)
n=2

In performing the integration in Equation (3.3.18), all second- and third-order
terms other than those given in Equation (3.3.23) vanish identically because of the
orthogonality of the trigonometric functions. The only third-ordes coupling is
between the flexural modes and the breathing mode. The fourth-order terms in
Equation (3.3.18), however, lead to extensive coupling between the flexural modes.
This coupling is neglected in Equation (3.3.23). The only fourth-order terms
retained are the uncoupled terms a! and bl These are sufficient to suppress the
unbounded flexural growth that occurs with all fourth-order terms neglected. In
the examples that follow we consider motion only in sequences of single modes.
The question of whether further fourth-order terms are needed for accurate
representation of several coupled flexural modes has not been addressed.

‘Demonslmion that response of the extensional modes can be reasonably neglected in investigating sta-
bility of the breathing mode is the subject of the first half of a paper by Goodier and Mdvor.¢
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The equations of motion are found by substituting these energy expressions
into Lagrange's equation

4 [91 _ 9T . au _
m ‘a*‘l o t o 0 (3.3.24)

With a, as x;, the breathing mode equation is found to be

b+ o, -+ 2 (- 2fa2 + v =0 (3.3.25)
4 =2

With a, as x;, the flexural equations a;e found to be

2
i, + n’:- 7 [(n2 - D%? -~ (n? - 2)a,

34
+8n 3n+4

2nd —
a:]a,. - ﬂ-:-‘,‘—-:-lzz— 5.8, (3.3.26)

An identical set of equations results for b,,.

Because only a few closely spaced “critical® modes dominate the flexural
response, the complexity of the study that follows is greatly reduced by considering
the response of only a sequcnce of single flexural modes, to find the critical flexural
mode in which stress is most amplified. Thus there is no need to consider the spa-

tial phase of the buckling mode, and the b, terms can be dropped. With these
modifications, Equations (3.3.25) and (3.3.26) become

i, +a, - -}(m2 - a2 =0 (3.3.2D)

ki

8, + {m} - f,,a,la,, + %n’f,,g,,ag = V12 af,5,3,

(3.3.28)
where

o2 = D0l = Dl
" n? + 1

f~. - nin? - 2)
" n? + 1

B = ‘n‘ é“%n’ + 4]/1':’(112 -2)

~

s
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and 8, = (a/h)8, is the initial imperfection expressed as a fraction of the wall
thickness. The quantity g, is introduced because for thin shells buckling is always
in modes with n? >> 1 so that g, — 1 and f, — n?, which simplifies Equation
(3.3.28).

3.3.3 initial Growth of the Flexural Modes--The Stability Parameter

Consider first that a small initial velocity is imparted to the shell wall, uniform
around its circumference. The distinction between small and larger initial velocities
will be made in the next section. For the present, focus also only on the initial
huckling motion, before it extracts a substantial fraction of the initial hoop mode
energy. Thea the a2 terms in Equation (3.3.27) can be neglected and the hoop
motion is simply

a, = fc— sin 1 (3.3.29)

where v, is the initial radial velocity and c is the plane strain wave velocity defined
in Equation (3.3.4). With this, Equation (3.3.28) reduces to th- ‘4athieu form

i, + (Q, — p,sin 1) a, = V12ab,u, sin 7 (3.3.30)
where

Q,= wl=a2¥n?- 1)2n?+ D!
' (3.3.31)

py ™ Tvoic = n¥n? — 2) (n? + 1) lv,c™!
and the term with a.,? has been dropped for the present because of its smallness.
Extensive study of the Mathieu equation® has shown that a,(r) grows if the point

Q,, upis in an unstable region of the Mathieu stability diagram. Such regions
appear unshaded in Figure 3.18.

For a particular case, we should now mark off the points given by Equation
(3.3.31) for the integer values of n. Figure 3.19 shows a set of such points on a
limited region of the Mathieu diagram near the origin.

As n increases we have

Q,—n‘a? , p,— nv.jc
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FIGURE 3.18 MATHIEU STABILITY DIAGRAM

and the points tel;d toward a parabola given by

pa = p 02 (3.3.32)
where"

P = v,/ca v (3.3.33)

The parabola lies mainly in the stable region in Figure 3.12 foi small values of v,
and large values of a (thicker shells). For these cases the higher points on the par-
abola have liftle chance of falling between shaded regions. The unstable regions
soon become very narrow. A very small change could remove the instability.
Small damping also removes it.’

t

l"l'hin use of the symbol p should not be corfused with the coefficients p,, in the equations of motion.
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For these cases attention is restrictcd to the first unstable region containing
the line 2 = 1/4. 1t is evident that there will usually be at least onz point in this

region. We have 2, = 1/4 forn = b if

2n2 _ 2.2
M:—z—;—li)-ﬁ‘ - %— (3.3.34)

and if b is not an integer we consider the nearest integer N. This relation is shown
in Figure 3.20. For a thin shell, a/h could not be less than 10. The curve shows
that the "critical* N would not be less than 4 and w:ll be considerably higher for
thinner shells. Then in Equation (3.3.34) we may neglect unity in comparison with
b? and obtain, with a? = h%12a?

b = i.316 (a/h)¥? (3.3.35)
This appears in Figure 3.20 as the broken-line curve.

The (circular) frequency of the n" flexural mode is w,, given in Equation
(3.3.31), in terms of the dimensionless time r. The frequency of the hoop mode,
Equation (3.3.29), is unity. From Equation (3.3.31), w, = 1/2, which means that
this critical flexural mode has a frequency one-hsif that of the hoop mode. This is,
of course, the relation required if the circumferential hoop stress is always to
encourage flexure. On successive compressive swings of the hoop oscillation, a
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flexural "buckie” alternates between flexing inward und outward, and in either case
the compression produces bending that increases the flexure. On the tensile
swings, the hoop stress pulls on the buckle and increases its velocity as it passes
through the undeformed position. This situation is similar to that in the columin
under an oscillating end load as discussed in Chapter 1. In the column and in the
problem of a shell with applied oscillating pressure, the associated compression is
maintained by the loading, which provides a source of energy for the flexural oscil-
lations. In the preseni problem, the energy must come froin the hoop mode. This
type of instability is called autoparametric instability because the energy comes from
the structure itself. To follow the energy transfer, the nonlinear terms in Equation
(3.3.27) must be retained.

Before considering this energy transfer, it is useful to rewrite the flexura!
mode Eguaiion (3.3.30), appropriate for initial growth, in terms of the psrameter p

introduced in Equation (3.3.33). With unity neglected in comparison with n? as
already observed, Equaticn (3.3.30) then becomes

d, + pA2AZ — sin 1)a, = pA? a V12 B, sin + (3.3.36)
where
P=vVJea , A=n/s , snd 8§ = p/a (3.3.37)

This form shows cleatly that the character of the solution is governed entirely by
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the parameter p, which we cail the stability parameter. The only other parameter in
Equation (3.3.36), other than the initial imperfection amplitude 8,, is A2, and we
have already seen that the critical valuz of n, and hence ¢f A, is known if « and p
are known.

If other initial conditions are considered, a similar parameter appears. For
example, if the shell is suddenly released from an initial hoop stress o, uniform
around the circumference, then

3,0) = o/JE, , 4,0 =0 (3.3.38)

The hoop motion is then

a(r) = -;—: cos T (3.3.55)

and the flexural equation, from Equation (3.3.28) with the a’ term neglected for
early growth, becomes

i, + pA2A2 = cos 1) a, = p*A2a/2 B, cos T (3.3.40)
where now

p = 0,/E (3.3.41)

Observe that for either Equation (3.3.37) or (3.3.41), p is simply the peak
hoop straia divided by the shell thickness parameter @ = h/a+12. As the peak
hoop strain increases or the shell becomes thinner, the coefficient of a, in Equation
(3.3.36) or (3.3.40) becomes more negative during the compressive phase of hoop
motion and the instability is more severe. We will see in the following sections
that, as p increases to values near 4, the motion becomes so unstable that the hoop
energy is transferred to flexure during the first compressive phase of hoop motion,
resulting in pulse buckling similar to that described in ths preceding sections.

3.3.4 Small Iuitial Velocity--Autoparametric Vibrations*

Return now to the question of energy transfer for small values of p (values
less than 1/2, as we will see). For this range, the second-order coupling term a} in
the hoop mode Equation (3.3.27) must be retained but the third-order term a] in
the flexurai mode Equation (3.3.28) can be omitted without serious error. Figure

3.21 shows the results of numerical integration of coupled Equations (3.3.27) and
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(3.3.28) with initial conditions in the form of Equation (3.3.39), with p = 0.4, a/h
= 100, and &, = 0.02. The mode with most growth was found to be n = 13,
which agrees with Equation (3.3.35).

The dominant feature of response is the transfer of energy back and forth
between the hoop mode (dashed curve) and the flexural mode (dotted curve). At
v = 0 and 7 = 105, all or nearly all the energy is in the hoop mode. At r = 50
and v = 155, nearly all the energy is in the flexural mode. Each transfer of energy
from one form to the other takes place during 8 oscillations of the hoop mode. For
smaller values of p, the number of cycles for energy transfer is larger. Also shown
(solid curve) is the strain in an extreme fiber of the shell wall. When the flexural
mode reaches its maximum, so does the extreme fiber strain. The peak amplitude
of the extreme fiber strain is more than twice that of the initial hoop strain. This is
a general result for energy transfer with no damping.

The peak amplitude of the extreme fiber strain is easily calculated by assum-
ing complete energy transfer from the hoop mode to a flexural mode. For energies

small enough that the a) term in Equation (3.3.28) can be neglected, the kinetic
and potential energy expressions in Equations (3.3.22) and (3.3.23) become

T = 232 + a2 (3.3.42)

U = 2a2 + [m‘m2 - n’a.,]ag (3.3.43)
where T = 2T/wEha, U = 2U/wE ba, n? >> 1, and we assume that a single
flexural mode dominates the response. For the initial velocity condition
corresponding to Equation (3.3.29), the total energy in the shell is

T(0) = 232(0) = 2(v,/0)? = 2p’a? (3.3.44)

where p = v,/ca from Equation (3.3.37). For the initial compression condition of
Equation (3.3.38), the total energy in the shell is

U'(0) = 2a2(0) = 2(0,/E;)? = 2p’a? (3.3.45)
where now p = o,/E,a from Equation (3.3.41). In either case, as already
observed, p is simply the peak hoop strain (in unperturbed motion) divided by a.
With a general definition of p in terms of the total shell energy,

p? = [T(® + U'(0)1/2a? (3.3.46)

§he following result applies to any hoop mode initial condition.

e e iyt o P 7 A
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Define a stress amplification A, as the ratio between the maximum total
stress (at an inner or outer fiber of the shell) and the peak unperturbed hoop stress
o,. Since the ring is linearly elastic, this amplification is given by the strain ratio.
The flexural strain at an extreme fiber resulting from a flexural displacement a, is
given by

-lzl 6?::02 - —2% - n’a, = /3 an?a, (3.3.47)

€p =

With complzte energy transfer to the flexural mode, the peak amplitude a,, is found

“from Equation (3.3.43) with a, = 0. Als, at the peak we have a, = 0, and, for

complete energy transfer, a, = 0. Then T = 0 and U is equal to the total energy
2p2a?. Equation (3.3.43) is then

2p2a? = nla?a? (3.3.48)

With a, from Equation (3.3.48) substituted into Equation (3.3.47), the peak
fiexural strain is

€, = V6 pa (3.3.49)

The peak unperturbed hoop strain is pa so that the stress amplification is

A, = Liapg - 6 = 2.45 (3.3.50)

independent of the mode number n.

This result (derived by Goodier and Mclvor*) shows that a brittle shell (or
ring) set into simple in and out breathing oscillations would eventually fail by brit-
tle flexural fracture for initial hoop stresses exceeding the fracture stress divided by
V6 == 2.45. With damping, some energy is lost during the energy transfer oscilla-
tions and the allowable hoop stress is larger. Also, since real materials have some
ductility, the bending strain for fracture is larger than for this elastic theory. Duc-
tility also introduces a form of damping by extracting energy each time the flexural
mode amplitude nears a peak. However, as p increases, damping mechanisms have
less time to act because the number of oscillations for energy transfer decreases.
To study potential failures of highly damped or ductile materials, we therefore
study stability for larger values of p.
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3.3.5 Intermediate Initial Velocity--Onset of Pulse Buckling®

If Equations (3.3.27) and (3.3.28) are integrated in coupled form without the
a} term for values of p exceeding 2, the amplitudes of motion are found to
increase without bound. This result can be deduced without numerical integration
by using the energy Equations (3.3.42) and (3.3.43) written in the form

T + U - 232 - a2

nZa? — nla,

al =

(3.3.51)

Thus, even with the total energy T. + U‘ fixed, the maximum flexural amplitude
is undefined when the denominator becomes zero or negative, i.e., when
a, 2 n’a?, because the numerator is always positive if the hoop plus flexural
kinetic energy is to remain less than the total energy.

The condition a, = n’a? is expressed in terms of p by recalling from Equa-
tion (3.3.34) that the critical mode for most rapid growth is near na = % and that
the peak value of 2_is pa. Thena, = n?a?becomes

p 2% (3.3.52)

This condition has a readily apparent physical interpretation. The peak hoop thrust
corresponding to p = ' is the static thrust that causes buckling, i.e., I, = u,in
Equation (3.3.30). As in low-order static buckling theorv, when the hoop compres-
sion reaches the critical buckling load, the amplitude of the buckling is undefined.

For p > 'A, a higher-order theory must therefore be used to solve the coupled
equations. Thus we use the fourth-order term in the potential energy Equation
(3.3.23), so that Equation (3.3.43) becomes

U" = 2a2 + (n‘a? - n%a,)a? + —13—6-n‘a,‘I (3.3.53)

) ]
and the energy conservation equation T + U = constant becomes

232 + a2 + 222 + (n%a? - nk,)a? + T:%n‘a: - 2p%a? (3.3.54)

Estimates for stress amplification with Equation (3.3.54) are more complicated than
for the small p theory. In the following paragraphs several bounding estimates are
made. Then we give examples of coupled motion found by numerical integration,
to illustrate rapid growth for large p.
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The simplest estimates are made in the same way as in the small p theory, by
assuming complete energy transfer to a flexural mode. With 4, = a, = a, = 0,
Equation (3.3.54) gives the following expression to determine a,:

—l%n‘a: + a?n*al - 2pa? == 0 (3.3.55)

The stress amplification is defined as before, which with Equation (3.3.47),
becomes

V3an? 2
A, = Spo Mama. WA (3.3.56)
\ pa pa [+

It is apparent that in the high-order theory, with the a? term in Equation (3.3.55),
the amplification is no longer independent of n. To solve for A, , assume for the
inoment that the buckling mode is the same as that for small p so that, from Equa-
tion (3.3.35), n, = 1/v2a. Then Equations (3.3.55) and (3.3.56) yield

12
A, min = -—?— [(1 + 6p)V2 — 1] (3.3.57)

A plot of stress amplification from Equation (3.3.57) is given as the dashed
curve in Figure 3.22. For small values of p, the amplification approaches the value
V6 from the low-order theory. As p increases, the amplification decreases. The
flexural mode grows more tapidly [because the coefficient of a, in Equation (3.3.28)
becomes more negative], but the maximum flexural amplitude is smaller in propor-
tion to pa because energy is absorbed into the a; term.

At these iarge values of p, however, the mode number of the flexural moce
with most rapid growth diverges from its value n,, = 1/+/2a for small p. (The loci
of flexural modes in the Mathieu diagram extends farther into the unstable region,
Figure 3.18, so many modes are unstable.) If instead of n, being held fixed, it is
adjusted at r:ach value of p for maximum rate of flexural growth, then the stress
amplification never falls below A, == 1.62, as shown by the upper curves in Figure
3.22. These critical values of n (or, more fundamentally, of dimensionless wave
number A) are found by nuinerical integration of Equations (3.3.27) and (3.3.28).
The critical modes are found to be given reasonably well by the empirical formula

1

A:, = ‘4—2 + (0.6)* (3.3.58)
P

This formula is constructed to give the proper asymptotic values A, -~ 1/v/2p,
corresponding to n,, = 1/V2a, as p — 0 (weak instability of autoparametric vibra-
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tion buckling, as described in Section 3.3.4), and A, = 0.6 as p — oo (strong insta-
bility of pulse buckling, as described in the next section, Section 3.3.6). For A
fixed ai 0.6, Equations (3.3.55) and (3.3.56) give A, = 1.62, independent of p or
«. When ) is varied according to Equation (3.3.58), it is convenient to write the
solution for A , from Equations (3.3.55) and (3.3.56) in the form

/2
Ao = n[@rt + &2 - 2] (3.3.59)

in which appropriate roots have been taken. Stress amplification from Equations
(3.3.58) and (3.3.59) is given by the lowermost solid curve in Figure 3.22. It is
clear that even with the proper critical mode at each value of p, the stress
amplification falls well below the value V6 from the low-order theory.
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However, these estimates of stress amplification are based on complete enerky
transfer, as in the small p theory. They do not account for the possibility that with
finite p the higher-order theory can allow greater amplification when the hoop
amplitude a, remains finite rather than vanishing altogether. This possibility arises
because of the n'a? — n’a, coefficient in Equation (3.3.54), which is the
coefficient that led to unbounded growth for p # % in the lower-order theory. For
finite p, the maximum stress amplification is found by again setting &, = 8, = O in
Equation (3.3.54), but by then differentiating the equation and setting da3/ da, = 0
to maximize a2 with respect to a,. This gives for a, at the maximum

i, = n?a}/4 (3.3.60)

This term is of second order but cannot be neglected for large p. The resulting
maximum amplification is found by substituting this expression for i, into Equation
(3.3.54) with 4, = &, = 0. With definition (3.3.56), the result is

/2
Ay = 2332 @04 + DV - ] (3.3.61)

The subscript n denotes that this expression includes only flexural stress, neglecting
for the moment the stress from &,.

Amplifications obtained with this expression, again with A from Equation
(3.3.58), are given as the second curve from the top in Figure 3.22. For finite p,
these amplifications are larger than in the curve from Equation (5.3.59) for com-
plete energy transfer. Furthermore, with a, now nonzero at the maxima, the total
bending plus hoop strain in an outer fiber is larger still. The maximum total strain
amplification is

~

Ay = Apmax + ﬁ,/pa
= Anma T (-"\nrmx)zll2x2 (3.3.62)

This expression is plotted as the top curve in Figure 3.22. Because a, is always
positive, see Equation (3.3.60), and the hoop strain is €, = —8,, this amplification
refers always to compressive strain, as noted in the figure. Also, this maximization
for strain assumes that in the actual coupled motion the phasing between the hoop
and flexural modes will at some time align itself so that both a, and a, have a max-
imum at the same time. Numerical integration of the coupled Equations (3.3.27)
and (3.3.28) shows that a very close alignment actually does take place when n is
chosen properly lapproximately according to Equation (3.3.58)). This is demon-
strated in the examples in Figures 3.21 and 3.23. Compressive stress amplifications
from such integration lie surprisingly close to the curve from Equation (3.3.62),
usuaily within a few percent.

T P U

1
]
3
3
3
3
£
b
ki
§
1




124
0.003

0.002

0.001

-0.001
-0.002
-0.003

0.003

0.002

FIGURE 3.23

1 1 T ¥ L I

p=04, =00V, 0= 19

."\“ ‘\\|_.' ;'\‘;' ‘.'\; :
[
," ¥ f]“li .‘.-“
a1 1 ! 1 Ugl
10 20 0 0 5 60
T
T ~T T T

p=04, $=002, a=19
Hoop Straine, = -3, |

Flexural Amplitude a_
Outer Fiber Strain ¢ = -a, -v3an?a,,

—_ A1 A L. ol
100 20 30 40 50 60
T

. p=20 =002 =2V

T L] 1 L4 1 V

2%
MA-317522-5

REPRESENTATIVE TIME HISTORIES

OF FLEXURAL MODES AND EXTREME

FIBER STRAINS FOR FINITE p AND
8 (a/h = 100, 5, = 0.02)

LA T e e et

wlin M T 2, Sl 5 R 1 LI Pl AL B 7, v e

ol

todoodt

N




125

Figure 3.23 also shows the very rapid energy transfer that takes place for large
values of p. In the example for p = 2, the extreme fiber strain reaches its largest
maximum during the second compressive swing of the hoop mode. Subsequent
maxima are greatly reduced because in tiese examples damping was introduced.
This was done by adding a viscous term 284, to the hoop mode Equation (3.3.27)
and a similar term 28w ,d, to the flexural mode Equation (3.3.28). The parameter
B is the fraction of critical damping, taken to be the same in both equations. The
upper two examples in Figure 3.23 show that for moderately small p (p = 04),
increasing the damping from 1% to 2% greatly reduces the maximum extreme fiber
strains because of the large number of oscillations required for the flexural motion
to grow.

Figure 3.24 shows stress amplifications fron1 many sach numerical integra-
tions for several values of damping 8. Smooth curves were drawn through the
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points from each coupied motion calculation. In these calculations, the initial con-
ditions were with the ring at rest under a uniform hoop compression, as in the
exumplos in Figure 3.23. Shell parameters were also as shown in Figure 3.23; a/h

= 100 and 3, = €.02. Ampliﬁcution in Figure 3.24 is {or tensile peaks. As already
mentioned, for 8 = 0 the compressive amplifications from these calculstions gave
the same curve zs predicted by the energy derivation, the top curve in Figure 3.22.
The tensile smplification curve for g = 0, in Figure 3.24, lies slightly above the
complote energy transfer curve, labeled A, in Figure 3.22. This is as one would
expect, because the contribution to total strain from i, (the difference between the

‘upper two curves in Figure 3.22) is compressive and is much larger than the
incresse from A, t0 Ay s Tensile strain is therefore maximized by nearly.com- -

plote enorgy transfer rather than by maximizing the flexural amplitude with finite
2.

For ‘each set of parameters in Figure 3.24, coupled motion was calculated for
several values of n and the largest ampiification was plotted. Values of n for largest
amplification were always close to n., given by Equation (3.3.58). The amplification
points were always within a band of = 0.1 in amplification about the smooth
curves. Calculations with a/h = 200 gave very nearly the ssme amplifications s
for a/h = 100, demonstrating that the primary influence of & = h/avi12 is con-
tained in p. Calculations with 8, = 0.005 and 0.0S showed an increase in
amplification with increasing imperfoctions for finite 8, but the increase was smal
encugh that the curves for the nominal value &, = 0.02 can be used for practical
estimates of stress. Experiments descrited in Sections 2.2.2 and 2.2.10 suggest that
equivalent single-mode imperfections are near this value.

Also given on the curves in Figure 3.24 are values of M, the number of

compressive swings of the hoop mode at the time the maximura stress occurs,

counting tire initial compression as M = 1. With no damping (8 = 0), M can be
quite large and is in fact indeterminant, since energy transfer in a beating fashion
back and forth between the hoop and flexural mode can repeat itself indefinitely,
Figure 3.21. For finite 8, M is the number of cycles to the maximum of the first

beat, since energy is being dissipated continuously and for subssquent beats the :

energy availsble for transfer is reduced. For 8 = 001, M = 9atp = 0.2, and M
w § gt p == 0.4 (sce Figure 3.23, top) and so forth, as shown in Figure 3.24. Forp
> 2, wMilqummmdilwmphubyM-z(mFm323 bot-
tom). For large p and 8, M

Figure 3.25 gives similer curves of stress amplificition versus p, but for an
waitial symmetric inward redial velocity. The curve for 8 = = 0 is the same as for an
|mMMoprMuwMtManmmmhw
mnmtmmmofmﬁon Even with 8 = 0.01 and 0.02 the curves are

quite similar- 40 those for Initisl compression; amplification drops markedly with -
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increasing damping for small p, but 8 has little effect for p > 2. For g = 0.04, the
amplifications for initial compression and initial velocity differ more widely and the
effect of damping is felt even for large p in both cases.
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FIGURE 3.26 STRENS AMPLIFICATION (PEAK TENSION)
IN A RING HAVING AN INITIAL SYMMETRIC
INWARD RADIAL VELOCITY

For sither initial condition, at largs veiues of p the energy transfer 1o flexure
talces piace during the first compressive swing of the hoop mode. This is pulse
buckling ss described in the main body of this monegraph. The trangition from
vibration buckiing to puise buckling is st sbout » = 4 for initial compression snd at
sbout p = 2 for initiel redial velocity, but the distinction is not preciss. For the ini-
tial radial velocity condition, the distinction carries over strongly to the physical
resuit of the buskling bucauas the initial kinstic energy can excoed the slastic hoop
capecity of the shell. This excess energy results in fracture (hrittle materials®) or
permanent plastic wrinkiss (ductils materials’) at wavelengths dowermined by the
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3.3.6 High Initial Velocity--Pulse Buckling’

For large values of p, we must return to initicl growth of the flexural modes,
because the nature of the growth is distinctly different from that for t.e small
values considered in Section 3.3.5. For large p, the parabolas given by '‘quation
(3.3.32), which define the loci of flexural modes in the Mathieu diagram, cxtend
into large regions of unstable motion. This is shown in Figure 3.26, in which the
Mathieu diagram of Figure 3.18 is redrawn with axes that extend to &} = 30 and u
= 40. The question now is not which mode or few modes fall into the region near

40 P=1384 ] | !
(2 = 1000) u =289 /
Locus of
Critical
Modes
30 P =692 —
(1 = 500)
b 20 =
P=4.15
(1 = 300)

30

GA-3772-87

FIGURE 3.26 LOCI OF FLEXURAL MODES ON MATHIEU STABILITY CHART
Shaded areas are the stable regions.
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0 = ', but what is the relative magnitude of growth of the larg: number of
modes that are unstable and is the growth rapid enough to cause wrinkling on the
first swing of the hoop mode.

In Figure 3.26, several parabolas are drawn with various values of the stability
parameter p. The combination of small a (thin cylinder) and large v, /c gives
paraboles extending well into the unstable region. For unperturbed elastic hoop
motion, v,/c = o,/E; must be less than the yield strain of the material, which for
engineering metals ranges from 0.002 to 0.005. To indicate the approximate
minimum radius-to-thickness ratio at which elastic pulse buckling can occur, values
of a/h associated with v,/c = 0.004 are given in addition to the basic parameter p.

The range of modes that could conceivably grow rapidly enough to cause such
buckling can be deterrnined by considering the coefficient of a, in Equation
(3.3.30). If a, is tc grow to a significant value in one swing, then this coefficient
must be negative at least part of the time. The largest value of n for which this can
occur is at sin 7 = 1. For n? >> 1, this maximum value is given by*

vo —
niy = ';:2' = ¢? (3.3.63)

It is convenient to use the dimensionless wave number A = n/s. The range of
interest is then 0 < A < 1, and A is treated as 3 continuous variable. These are
the same parameters introduced in Equation (3.3.37). For the initial symmetric
radial velocity condition, the flexural modes are governed by Equation (3.3.36),

~ which is repeated here with 5, = 0.

i, + pPA2(\2 -~ sin7)a, = 0 (3.3.64)
For the present, we consider initial vglocity perturbations
4,(0) = y, v,/c (3.3.65)

where vy, are Fourier coefficients that describe a small perturbation in uniformity of
v, around the shell.

For pulse buckling, the solutions of Equation (3.3.64) have an essentially
hyperbolic behavior. To emphasize ihis, and also to relate elastic buckling to the
plastic flow buckling of Section 3.2, we consider first the equation obtained by
replacing sin T with 1 in Equation (3.3.64); i.c., we assume that the hoop thrust is

*1r v,/c is replaced by its equivalont, o,/E,, this definition of s? is seen 1o be snalogous to
s? = o,/E,a?, s given in Section 3.2 for plastic flow buckling.
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constant at its maximum unperturbed value o, = E,v,/c. For initial conditions
(3.3.55), the solutions to this equation are

Vo¥a Sinh r,7
l‘n

a,(r) = (3.3.66)

where

n=pA(l —ADY2 | 0 <A< (3.3.67

The maximum value of the amplification factor (sinh r,7) /r, occurs at the max-
imum value of r,. The most amplified mode is therefore A = 1/v/2 = 0.71. The
mode number is the integer n nearest s/ V2. This is essentially the soluticn given
in Section 2.2, with s interpreted as noted earlier.

The solution to Equation (3.3.64) has basically the same character, but it
must be found numerically. As an example, consider the thin shell in Figure 1.5,
with a/h = 480 and v, = 800 inch/s = 20 m/s. With ¢ = 200,000 inch/s (5100
m/s) and » = 0.35 for the aluminum 6061-T6 material, then p = 6.6 and s = 105.
Results of numerical integration of Equaticn (3.3.64) for these parameters and ini-
tial conditions Equation (3.3.65) are given in Figure 3.27. Many modes experience
substantial growth. During the early motion (r < 1.5), growth is almost uniform
fromn = 2 to n = 75. Later, growth is very rapid¢ and modes near n = 63 are
much 1nore amplified than others. The corresponding dimensionless wave number
is A = 0.60. This vaiue is not much different from the value A = 0.71 if the hoop
thrust were constant at its peak value. The growth with time of the most amplified
mode is shown in the lowermost plot of Figure 3.27. It reaches a maximum at r =

.1 and then begins an oscillation. In the real shell, Figure 1.5, this oscillation
never occurred because plastic hinges were formed during the time of rapid growth,
from » = 2 to 3. The wavelength of observed wrinkles has mode numbers from
n = 50 to 100, in the range of the theory.

To determine how the critical value of A varies with p, we integrated Equation
(3.3.64) with initial corditions Equation (3.3.65) for a sequence of values of A at
each of several values of p. The results are summarized in Table 3.5. Over the
wide range of amplification, from ca./v,y, = 5.3 to 11,910, the dimensionless
wave number A ranges only from 0.630 to 0.585. In the midrange, where the
onset of buckling is likely to occur, A, = 0.6C. The critical value of p for buckling
is certainly in the range from 2 to 12 givea in the table. For example, if we take v,
= 0.0! (i.c., take an equivalent single critical mode perturbation of 1% of the initial
velocity v,), the range in amplitude of ihe critical mode is from 5% to 119 times
the uaperturbed hoop amplitude v,/c. The locus of critical modes for L = 0.6 is
the straight line u = 2.8 Q given in Figure 3.26. This follows from the relations u
= ph2and N = phA4
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FIGURE 3.27 GROWTH OF FOURIER COEFFICIENTS FOR ELASTIC PULSE
BUCKLING OF A THIN SHELL FROM RADIAL IMPULSE

(vo/c = 0.004, a/h = 480)
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Table 3.5

EFFECT OF p ON A, AND AMPLIFICATION
OF PREFERRED MODE

Cace/Ve¥n

P Aer (at 7 = 2.7)
2 0.630 5.3
4 0.615 20.7
6 0.605 96.6
8 0.595 4740
10 0.585 2370.0
12 0.585 11910.0

\

Similar numerical integration was performed for initial imperfections in the
shape of the shell, represented by 5,, in Equation (3.3.36). It was again found that
A ™ 0.60 for p in the range from 3 to 12 and that growth is large and essentially
exponential in this range. Peak amplification is close to empirical fit

®
Gy = =2 = 12¢1 (3.3.68)

n jmax

where a, = (a/h)a, is the amplitude of the most amplified mode expressed as a
muitiple of the wall thickness, as is 8.

Equation (3.3.68) can be used to calculate critical conditions for incipient for-
mation of plastic hinges at the elastic buckle wavelengths. First observe in the bot-
tom graph in Figure 3.27 that the amplitude of the flexural mode is very small at 7
= /2 = 1.57 compared with the amplitude at + = 3.1. (This graph is for growth
of velocity imperfections, but it has the same form as for shape imperfections.)
Thus, when the hoop mode reaches its maximum value at 7 = /2, the flexural
amplitude is small, and when the flexural mode reaches its maxithum at + = 3.1,
the hoop mode amplitude is small {the unperturbed hoop amplitude is zero at v =
m, Equation (3.3.29)]. Incipient yield from hoop and flexural motion can therefore
be described separately. '
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To determine the critical condition for incipient flexural yield, Equation
(3.3.68) is used with Equation (3.3.47) for extreme fiber flexural strain:

€y = \/sanzan
= f3a A a, h
a a
- VI (1.2 5, e % (3.3.69)

This expression is now set equal to the yield strain ¢,, with the result

a €y
2 2y o 0.748 peP (3.3.70)
h 3, P

in which the critical wave number A = 0.60 has been used. This expression is plot-
ted in Figure 3.28. Also plotted are lines defining the limits of elastic hoop motion.
These are found by setting the peak hoop strain, o,/E; = v,/c, equal to the yield
strain” e, .

v
-2 - - -Ph_ . 371
. pa Ti3a €, (3.3.71)

To plot this relation in Figure 3.28, (3.3.71) is rear;anged into

a & __P_ (3.3.72)
h 5, Vi2 3, o

Thus, ir ™ gure 3.28, a line must be drawn for each assumed value of shape imper-
fectior 5, 1n order to have the line appear on the same plot as the general curve for
flexural yielding.

_l_*‘igure 3.28 is used by entering with a value of the known shell quantity
a€,/h8, and then examining for hoop yield or for flexural yield from dynamic buck-
ling. Permitted values of p for elastic hoop motion lic below the lines for each
specific value of §,. Value_s of p above these lines are not attainable for purely
elastic response. Thus, for &, = 0.01, hoop yield will occur before dynamic buck-
ling vield . ai ‘s with ae,/h8, < 104. For thinner shells (larger a/h), first
yield wiil occur oy dynamic buckling. The upper abscissa gives example values of

‘The relationship between this yield strain and the yield strain in simple tension or compression depends
on the yield function. ... T esca yield, their ratio is simply 1 — »%. For a ring, we replace E,; with E
and yield is by simple o~ - sion.
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FIGURE 3.28 CRITICAL CONDITIONS FOR FLEXURAL YIELD FROM DYNAMIC

ELASTIC PULSE BUCKLING IN THIN SHELLS OR RINGS

a/h for 8,/€, = 2.5, which for 8, = 0.01 gives ¢, = 0.004, a typical value for
engineering metals. For these parameters, the thickest shell that will buckle to
incipient flexural yield without first yielding in hoop compression has a/h = 260, a

very thin sheli.

Critical values of p for buckling with 3,, = (.01 must be larger than p, =
3.66, the value at the intersection of the hoop and flexural yield curves. Observe
also that critical values of p are never much larger than this value because the
buckling curve increases exponentially with p, Equation (3.3.70). For the thinnest
shells of practical interest, p at first flexural yield will not exceed about S. The
assumed value for 5,, can also vary widely without causing large changes in the
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minimum value of p that can cause yield from buckling. For 5,, = ().02 this value
is p = 3.0, and for &, = 0.005, p = 4.3. From a practical viewpoint, the critical
condition for buckling can therefore be taken as a critical value of p near the center
of the range from p = 3 to p = 5, which covers essentially all cases of interest.
For the simple formulas below, we take p = 4. From Equation (3.3.68), this is
equivaient to taking the critical condition for buckling to be a critical value of
amplification of initial imperfections; in this case, Gy, ™ 65 atp = 4, Atp = 3,
Grax ™ 24;and at p = 5, G = 178.

From the definition p = v,/ca, the impulse I = phv, that produces the criti-
cal condition for elastic buckling is

I, -phcap-phc:/-%-a—-4

2
I, =115 pcal-:-‘-l (3.3.73)

This expression is valid as long as the maximum hoop strain remains elastic. With
p = 4, this condition requires

Vo 4h
=2 = - £
c  P*T T @
or
a 4 1.15
-_— W e — 3. '74
h = 312:y €y (3.3.74)

For €, = 0.004, a/h > 288.

3.4 CRITICAL RADIAL IMPULSES FOR ELASTIC AND PLASTIC-FLOW
BUCKLING OF RINGS OR LONG CYLINDRICAL SHELLS

3.4.1 Approach

The ideas used to develop the simple formula in Equation (3.3.73) for critical
impulses for elastic buckling of rings or long cylindrical shells can be extended to
include plastic flow buckling, which occurs for thicker shells. At the end of Section
3.2, a lower bound on impulse for plastic flow buckling was given simply as the
impulse needed to bring the ring or shell to hoop yield. For thick shells this is far
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too conservative because appreciable plastic flow in the hoop mode can take place
before any serious buckle amplitudes are observed. In this section critical impulses
are determined under the assumption that amplifications of initial shape imperfec-
tions by a factor of about 20 can be safely allowed without objectional deformation.
Thus, for an equivalent shape imperfection in the critical buckling mode equal to
1% of the wall thickness, the buckle amplitudes would never exceed 20% of the
wall thickness.

As in the plastic flow theory given in Section 3.2, it is assumed that no strain
rate reversal occurs during the buckling motion, so that material points are always
loading, and stresses and bending moments can be calculated with the tangent
modulus in plastic compression. In calculating buckle thresholds, this is never true
during the terminal motion because one must calculate right up to the point where
the inward hoop motion stops, and beyond for very thin shells as just seen in Sec-
tion 3.3. With finite flexure, points near the buckle crests on the tensile side of the
flexure must therefore unload elastically before the hoop motion ceases. Since the
elastic modulus is much larger than the tangent modulus, use of the tangent
modulus theory is conservative because it allows more flexure than would actually
be experienced. In Section 3.4.6, examples from a numerical analysis that includes
strain rate reversal and elastic unloading show that results from the simple theory
are nevertheless reasonably accurate. Experimental results for threshold plastic
flow buckling are also given, in Section 3.4.4,

For intermediate length shells another resisting moment, called the directional
moment, must be included in the theory. Also, in strain-rate sensitive materials
viscoplastic moments can dominate over hardening (tangent modulus) moments.
These effects are considered in Chapter 4. Because hardening moments dominate
in many practical problems, the results in the following sections for the simplest
plastic theory have considerable practical importance.

3.4.2 Strain Hardening in Engineering Metals

To study the complete spectrum of pulse dbuckling from thick to thin shells, it
is necessary to use a more accurate description of strain hardening than the con-
stant hardening modulus E, used in Section 3.Zz. Tests oii several aircraft alloys
show that an accurate description of strain hardening is given by

PR 0<ec<e
E, e, + K(e — ¢,) € 2 ¢ G.4.1)

where E, is the tangent modulus, €, is the yield strain, and K is a parameter that
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describes the post-yield shape of the stress-strain curve. Integration of Equation
(3.4.1) gives

Ee 0<¢€e,

] (3.4.2)
|Ee* - ”’K[e, + K(e - e,)l “ e <,

(r-

- Examples of stress-strain curves from this formula are given in Figure 3.29.
Large values of K describe curves with abrupt yield, for which the tangent modulus

" drops quickly after yield. Smali values describe more rounded curves with substan-

tial strain hardening. The curve for K = 30 was measured from tensile tests on
aluminum 6061-T6 sheet and small diameter tube stock. The curve for K = 10 is
representative of compression tests on magnesium alloys. The curves were
deduced from the test data by graphical differentiation of stress-strain curves con-
tinuously recorded on a strip chart, which gave E and E,(¢). Plots were then made
of o/E, versus €, from which K was determined. The yield strain ¢, was then
determined so that Equation (3.4.2) matched the measured stress at about 1%
strain. When the resulting parameters are substituted into Equation (3.4.2), the
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entire stress-strain curve is matched to within the few percent experimental accu-
racy. Table 3.6 gives parameters found in this way for alloys of aluminum, mag-
nesium, and titenium. The linear fit of Equation (3.4.1) to the differentiated
stress-strain data was generally accurate to strains of at least 5%.

Table 3.6
ELASTIC AND PLASTIC PARAMETERS FOR A FEW AIRCRAFT ALLOYS'

p E E
Alloy kg/m®> GPa 10°psi K ¢, & D =K

Aluminum 6061-.T6 2730 69 10.0 30 00039 0.0043 0.0280
Aluminum 6061-T6 2730 69 10.0 15 0.0038 0.0045 0.0341
(compression)

Magnesium AZ31B 1820 41 6.0 14 0.0048 0.0059 0.0397
Magnesium ZK60A 1820 41 6.0 30 00065 0.0069 0.0355
Titanium 6Al-4V 4470 106 15.5 30 0.0070 0.0075 0.0370

* From tensile tests to € = 5% strain, except as noted.
t Average stress 10 3% strain, divided by elastic modulus E.

3.4.3 Equations of Motion

The equations of motion to be used in this section are those derived in Sec-
tion 3.2; however, with the stress-strain curves of Equation (3.4.2), the coefficients
are no longer constants.” Equation (3.2.10) is then written

u" + (1 + sHu" + slu + —29-7
a‘g

aP

o 4,
~T57En (3.4.3)

- — sl + u; + v +

where u = w/a, primes indicate differentiation with respect to 8, and dots indicate
differentiation with respect to . In order to treat a continuously changing tangent
modulus, which varies from the elastic modulus at small strains to much smaller
values given by Equation (3.4.1) for plastic strains, the dimensionless time 7 is that

o s
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used in the elastic problem and additional dimensionless parameters 82 and s? have
been introduced as follows:* .

s

- Ct : = Ey 1. OO
T rull B E ) +E, 344

and a? = h?/12a? is the shell parameter as before. The parameter s? is the same
as that in Equation (3.2.7) but with the fixed hoop stress S/h and hardening
modulus E, replaced by their continuously changing counterparts. Thus, as the
shell moves symmetrically inward in the hoop mode, both 82 and s? change with
time. The last term in Equation (3.4.3) is from an applied pressure P(6, 7), for
later extension in Section 3.5 to finite duration pulses.

The initial shape imperfection u(8) is expanded into a Fourier cosine series,
as are the deformation u(@, v) and applied pressure P(9, 7):

u(g) = —:’- f 8, cos n@ (3.4.5)
n=2
u(@,7) = u,(r) + i uq(7) cos né (3.4.6)
n=2
P(8,7) = Pl + T y, cos né (3.4.7)
n=2

There is no difficulty in adding sine terms, but in what follows response is analyzed
for a sequence of modes as in the previous sections, so there is no need to include
these terms explicitly. The pressure terms y,P,(r) are regarded as small nonuni-
formities whose effect will be compared with the effect of shape imperfections 5.,
expressed as in Section 3.3 as a fraction of the wall thickness h. Substitution of
these expansions into Equation (3.4.3) gives the following equations for the series
coefficients:

W, + % 1+ u,) = ’Pé’:") (3.4.8)
i, + aB¥n? - 1) (n? - sH,
- P,
- a8%%n? - 15, -:l + ﬂfﬁﬁ)— 349

‘ . . . . 3
In this section, 8 no longer refers to viscous damping ratio.
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In the more general case, with the load applied as a finite pressure pulse, the
shell is taken initially at rest in the unstressed condition, giving initial conditions

ua(0) = 0, (0) = 0 ne=20223,. (3.4.10)

For an ideal impulse,
im P a
10) = P08 j; PO Sar 3.4.11)
these initial conditions are replaced by

WO =0, @@ =18 ae023. 04D

and the pressure terms in Equations (3.4.8) and (3.4.9) are dropped.

. In either case, the solutions to Equations (3.4.8) and (3.4.9) are fcund by
numerical iategration. The procedure begins by solving for the symmetric hoop
motion u,{r) from Equation (3.4.8). Having neglected the small influence of
flexure on the midsurface strain € in the formulation of Equation (3.4.3), we take
u, = w,/a = ¢. Then o, (¢) in Equation (3.4.8) is determined by using the
material stress-sirain relation, Equation (3.4.2). Similarly, «(7) is used in Equa-
tions (3.4.1) and (3.4.2) 10 calculate the time-varying coeficients 82 and s in the
flexura! mode Equation (3.4.9). With these values st each time step, the fiexural
equations are also solved by numerical integration.

3.44 Piastic Flow Duckiling'

Before performing this numecical intogration, it is useful to obtsin apperoxi-
mate solutions by extending the results in Section 3.2 found for constant s and E,,.
Then o) is replaced by a constant aversge stress &,, and the parameiers
s? = &,/a’Eyand B = E,/E are also constants. When these simplifications are
introduced icto Equation (3.4.9), its solution with initial conditions from Equation
(3.4.12) is simply

ulo 7.10

iy s 1 {cosh pr — 1] + ~=— ginh p,r (3.4.13)

where n < sand

\/2 '
Pa = cﬁ.[(a’ - G - n’)l (3.4.149)
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The first term in Equation (3.4.13) shows the exponential growth of shape
imperfections. For n? >> 1, the term is of exactly the same form as the
amplification fupction in Equation (2.2.50) for the ber under axial impact. All the
conclusions for growth of random imperfections in the bar can therefore be carried
1 over to the ring or long shell. A band of high-order modes is highly amplified.
‘The preferred mode number, near the maximum amplification, is the integer
closest to n = 8/v2. With the reasonable assumption of random imperfections,
buckling thresholds can be estimated by studying motion in this mode, with an
equivalent single imperfoction coofficient 8, that represents the integrated effect of
modes with made numbers near the critical mode number. The magnitude of the
amplification is governed by the duration of the inward motion. This will be dis- -
cussed in more detail ater.

AT YR ! NM " e

The second term in Equation (3.4.13) is from buckling precipitaied by imper-
; factions in the noerly uniform inward velocity. A plot of this amplification, in
, Figure .11, bhas the same general features as for shape imperfections. It has a
maximum at the integer closest to n = o/vZ. The relative importance of shape i
sad velocity imperfections can therefore be datermined by caiculating response for §

| n = 3/~/2. For this mode, n? >> 1, p, is maximum and is given by
% N
i - afs® _ 4
Pa max 3 z..JE. =Q (3.4.15)
The ratio of the maximum displacements caused by shape and vuiocity imperfec- g
§ tions is then
{
Ve _ 30 b6,  coshQr-—1
. i Uves Ya  sav,(pE)'? sinh Qr
3, 2VI3a
= — (3.4.19)
Yo VEY!

where v, = 1,/ph is the initial inward velocity of the shel! wall.

Equation (3.4.16) can be inverpreted directly in terms of the idealized
compressive stress-strain curve ¢ = o, + E,¢ used in the analysis. To do this,
the initial kinetic energy in the shell wall is equated to the plastic work of mem-
brane straining to a final strain € at average stress o

e m e —

2
: PYo o opg= ¢, -2
3 2 S = &y g (3.417)
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in which o, is the increment in stress due to strain hardening. This oquation is
now used to eliminate v, in Equation (3.4.16), with the result

A A2 =
Sume l”’ ] L (3.4.18)
Uye) Ty Yn

'The strain hardening increment o), is a small fraction of the average yield
stress &, for most metals of interest (see Figure 3.29 for K = 10 and 30). Equa-
tion (3.4.18) shows that in these materials shape imperfections are likely to
dominate over velocity imperfections if shape imperfections as a function of wall
thickness (8,) are comparable to fractional perturbations in the nominally uniform
load (y,). For example, from formulas to be given later in this section, a shell

with a/h = 24 made of aluminum 6061-T6, for which K = 15, buckies at a plastic
strain increment of ¢, = 2.0%. With E, = 400,000 psi (2.8 GPa) from Figure. .

3.29, this gives o, = 8000 psi (55 MPa). With an average stress &, = 40,000 psi
(276 MPa) this gives (66,/0,)"/? = 5.5. Thus, velocity imperfections would have
to be about five times larger than shape imperfections to produce the same
deformation.

The simple solution in Equation (3.4.13) for constant parameters also suggests
a procedure for finding an approximate formula for critical impulse at the threshold
of allowable buckling. The criterion for buckling is taken as a critical amplification
of initial shape imperfections. Experimental resuits will be given to demonstrate
that, as for the thin bar buckling in Section 2.2, shape imperfections are propor-
tional to wall thickness; thus this criterion corresponds to buckle amplitudes equal
to some fraction of the wall thickness, a reasonable criterion.

Amplification in Equation (3.4.13) depends mainly on the argument Qr of the
hyperbelic term, since imperfections are typically very small, so concern is with
large amplifications in which hyperbolic growth dominates. It is then reasonable to
assume that a critical amplification criterion corresponds closely to Q= reaching a
critical value, that is,

Q=B (3.4.19)

where B is a constant to be determined and 7, is the dimensionless duration of the
invard membrane plastic flow in the hoop mode. In real time this duration is
approximately

I.a
é.h

tp = (3.4.20)
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which is the time to bring a unit axial length of wall element, of area had@, to rest
from velocity v, = I,/ph at constant deceleration o,hdd/phad® = &,/pa. With
the definition r = ct/a, Equations (3.4.15), (3.4.19), and (3.4.20) are combined to
give the following expression for critical impulse:

E /2
I = 2ah(pé,)? [——'l] - B (3.4.21)
Ty

This formula can be used directly for materiais with a constant hardening
modulus E,. In this case, the amplification of shape imperfections, from Equation
(3.4.13) withy, =0 and n? = s2/2, is

L ]
Gy = =2

l = 2(cosh pyr — 1)

n
= 2(cosh B ~ 1) = ¢ (3.4.22)

where u, = Wo/h = (a/h)u,. It will be shown in the following pages that & rea-
sonable value for §, is about 0.01, just as for the thin strips in Section 2.2. Then a
reasonable critical value for G,, is 20, which then gives deformations of 0.2 h,
which are perceptible but generally not unacceptable. For G, = 20, B = 3.0.
Other choices for G, do not change B appreciably; for G,,, = 50, B = 3.9.
With B = 3, Equation (3.4.21) becomes

Icr - 6ah(pE|,) 12

= V3 a(pEy 2 [-‘al

E 1/2 2
- V3 pea "EE] 1'—] (3.4.23)

This formula is similar to Equation (3.3.73) for elastic buckling but applies
only for shelis with a/h small enough that buckling occurs only during substantial
plastic flow. The two formulas differ simply by the factor (1.15/V3)(E/E,) V2.
Typically, E/E, = 100 so this factor is about 6.60. Thus, for a given a/h, Equation
(3.4.23) gives much smaller impuises than Equation (3.3.73). However, Equation
(3.4.23) must, of course, give larger impuises than Equation (3.3.73) because it is
to be applied to thicker shells. With this simple constant E, theory, there is obvi-
ously a range of a/h for which neither the elastic nor the simple plastic theory
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applies. For E/E, = 100, this range is at least from a/h = 288, the lower limit of
Equation (3.3.73), to a/h = 288/\/6.6 = 112, the value for which Equation
(3.4.23) gives the same critical impulse as from the elastic theory for the thinner
shell, a contradiction in physical expectation.

This range in a/h for which neither theory applies is a range of considerable
practical importance. This is why the more accurate description of material
behavior was introduced in Equations (3.4.1) and (3.4.2), along with equations of
motion with variable parameters. Even with these added complications, it is possi-
ble to derive a simple critical impulse formula for plastic flow buckling that covers
the entire range of interest and is surprisingly accurate.

To derive a critical impulse formula for varying o and E,, Equations (3.4.8)
and (3.4.9) for motion are first integrated numerically tfor several examples. The
results show that most of the growth of u, occurs near the end of the hoop motion
because o increases and E, decreases with increasing € and hence with increasing .
An indication of why this has a strong effect on growth is apparent in Equation
(3.4.15), which shows how & and E,, enter directly into the hyperbolic argument
Qr. To obtain a simple formula for critical impulse, o and E, are therefore taken
to be constant at their final values, and Equation (3.4.21) is used from the constant
parameter solution.

These final values are determined by substituting the final hoop strain € into
the material stress-strain relation in Equation (3.4.1). The final hoop strain is

found by setting the kinetic energy imparted by I, equal to the strain energy to
bring the shell wall to rest, with the small energy diverted into flexure neglected.

2 €
1 ig -
5 ph [ph] h j: o (2)de (3.4.24)

For this integration, the material is taken to be elastic, perfectly plastic, with the
result

12 = 2ph? o,

€ - le] (3.4.25)

The hat is used in €, to distinguish this yield strain, adjusted to ﬁg the elastic, per-
fectly piastic model, from the yield strain ¢, as defined for the actual stress-sirain
relation in Equations (3.4.1) and (3.4.2). Inspection of Figure 3.29 shows that
€ > €, and that €, — €, as K — oo, For ¢ >> €,/2, the term ¢ — &,/2 in
Equation (3.4.25) can be replaced by €; — e, to simplify the exp.ession for o/E,
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from Equation (3.4.1), with the result
KI2
LA (3.4.26)
E, 2ph%,

in which it has also been assumed that K >> 1 so that the €, term in- Equation
(3.4.1) can be neglected. Table 3.6 shows that this is a reasonable assumption.
With o = ¢ as already assumed in calcnlating €, Equation (3.4.26) substituted
into Equation (3.4.21) gives the desired simple formula for critical impulse:

/4

2
I, B al 3K

3/2
(p&,)m[-l;l-l (3.4.27)

The corresponding final strain, from Equations (3.4.25) and (3.4.27), is
12

11,1 2 h .‘

€ Z[Bl3K] " + e,

Numerical integration of the equations of motion Equations (3.4.8) and
(3.4.9) demonstrates that the simple formula in Equation (3.4.27) is accurate to
within 10% for K ranging from 10 to 30 and a/h ranging from 20 to 200. This
degree of accuracy is remarkable, considering the approximations that led to the
formula. It is certainly within the accuracy of the assumptions that underlie our
entire approach to the analysis of plastic flow buckling.

(3.4.28)

As in the constant E, formula in Equation (3.4.23), the choice for B in Equa-
tion (3.4.27) corresponds to a choice for the allowable amplification of imperfec-
tions. In the following paragraphs we give experimental results’ from which the
choice of Gy = 20 was made. Experimenis were run on a sequence of 6-inch-
diameter (152 mm) aluminum 6061-T6 shells with a/h = 24. Impulses nearly
uniform around the circumference were applied by sheet explosive placed cver a
Va-inch-thick (6.3 mm) layer of foam neoprene rubber as described in Section 3.2,
Figure 3.12. Buckled profiles from five experiments at increasing velues of impulse
are given in Figure 3.30. The upper records show that buckling is well developed at
impulses greater than 5900 taps (1 tap = 1 dyne-sec/cm? = 0.1 Pa-s). Very small
ripples can also be seen for the shells tested at 3900 and 2800 taps (390 and 280
Pa-s). Additional profiles of these two shells at a higher magnification are given by
the lower two traces. These show very distinct buckling over the entire circumfer-
ence at 3900 taps and over portions of the shell at 2800 taps. The amplitude of
buckles in these two shells is so small that in visual inspection, without the aid of
the recording device to magnify deformations, no buckling could be cbserved.
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FIGURE 3.30 BUCKLE PROFILES AT SEVERAL MAGNITUDES OF SYMMETRIC
RADIAL IMPULSE

Aluminum 6061-T6 cylinders, a’h = 24, h = 1/8 inches = 3.2 mm.

Peak deformation (half the maximum peak-to-peak deformation away from

the explosive seam) in each shell is given in a semilog plot against impulse in Fig-

ure 3.31. The points falls near a straight line, indicating an exponential increase in
amplitude with impulse, just as in the theory.

The theoretical curves of amplification versus impulse were calculated by
numerical integration of Equations (3.4.8) and (3.4.9) for the three stress-strain
curves in Figure 3.29. These show that the experimental exponent (slope of the
curve) is matched by the K = 5 theoretical curve. The K = 10 curve, which
corresponds to a stress-strain curve near that for aluminum 6061-T6 in compres-
sion, is at a slope a factor of 1.6 larger than the slope of the experimental line.
This difference can be attributed mainly to effects of strain rate reversal, neglected
in the analytical theory, as will be shown in Section 3.4.7.
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The theoretical mode number of the most amplified mode is n = 28 for K =
10 and n = 27 for K = 5. These are larger than the total number of waves on the
shell profiles in Figure 3.30 (n = 18), but are close to the wave numbers of many
of the individual waves. Again, the difference can be attributed to the effects of
strain-rate reversal. as will be shown. The high modulus of elastic unloading in
flexure tends to freeze the buckle motion, suppressing growth in general, and freez-
ing the motion sooner for high mode numbers.

By comparing the theoretical and experimental curves in Figure 3.31, we can
estimate the equivalent imperfections as we did for buckling of bars in Figure 2.21.
The experimental deformations are matched for the K = § curve by taking 5, =
1.7%. The K = 10 curve gives a match within a factor of 2 in the 5% < w,/h <
50% range of principal interest by taking 5, = 0.6%. These equivalent imperfic-
tions are within the same range as was found for elastic bar buckling, at the long
wavelength extreme compared with wall thickness. We are thell.-.fore encouraged
that, even with this limited experimental data, the assumption of 5, = 1% will give
critical buckling loads to reasonable accuracy. Figure 3.31 shows that, if 5,, is
changed above and below this value by a factor of 2, critical impulse to produce
w,/a = 20% with the K = 10 curve changes only by * 14%.

The numerical results in Figure 3.31 can be used to determine how the
parameter B varies with amplification G,,,. The amplification curve for K = 10 is
first approximated by the exponential function (the straight line in the semilog
plot):

0.0086 1,

Gy = 0.10 ¢ (3.4.29)

in which I, is in Pa-s. The relationship between I, and B2 for this example is
found by substituting the cylinder parameters for this numerical example into Equa-
tion (3.4.27):

Ve 32
- Rl2 2 kg | 6 payi2 | L
I, = BY2 (0.0762 m)[3 < 10] 2730 <& 300 x 10° Pa) l24]

= 298 B2 pa—s (3.4.30)
Substitution of Equation (3.4.30) into Equation (3.4.29) gives

Goux = 0.10 2563
or

BY2 = 0.39 In(10 Gp,,) (3.4.31)
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Observe aiso that if K = § or K = 30 is used in Equation (3.4.27) in place of
K = 10, Equation (3.4.31) remains unchanged if the coefficient of I, in the
exponent of Equation (3.4.29) is changed from 0.0086 to 0.0086/+2 or 0.0086 /3,
respectively. These three coefficients substituted into Equation (3.4.29) give a fan
of three lines in Figure 3.31 passing through the point I, = 0, G, = 0.10, as
shown. These lines are reasonably good approximations to the ampiification curves
for K = 5, 10, and 30 in the neighborhood of G, = 20. This shows that the
variation of I, with K as given by Equation (3.4.27) is essentially correct near the
terminal motion, for which the equation was derived.

Equation (3.4.31) shows the expected result that the value of B2 to be used
in the critical impulse formula depends on the amplification one specifies for the
buckling criterion. For G g = 20, BY2 = 2.07. Changing t0 G e, = 10 or Gy,
= 50 changes B2 to 1.80 or 2.42, respectively. These values are only ~13% and
+17% below and above the value for G = 20. Reasonable estimates for threshold
buckling to produce observable wrinkles (peak deformation of about 20% of the
wall thickness for 5,, = 1% as discussed above) can therefore be made by using B!/2
= 2. Equations (3.4.27) and (3.4.28) then become

9 1/4 h 3/2
I, = 2&'7;-!'(-] (p&y)m['a"] (3.4.32)
K
1/2 -
¢ = [-3-%-] —f— + % (3.4.33)

3.4.5 Sumraary of Formulas for Critical Impulse

The formulas just given for plastic flow buckling are applicable only to shells
thick enough that buckling takes place during plastic flow. At the other extreme,
the formula for threshold bending yield from elastic buckling in Equation (3.3.73)
is applicable only for shells thin enough that there is no plastic flow during the
inward hoop motion, as specified by Equation (3.3.74). For an interim range of
wall thicknesses (radius-to-thickness ratios), neither set of assumptions leading to
these critical impuise formulas is applicable. For practical use, however, this range
is covered by simply adopting the conservative procedure of using whichever for-
mula gives the smaller impulse. With this procedure, the transition radius-to-
thickness ratio is the value for which the plastic flow and elastic buckling formulas
give the same impulse. (This will be demonstrated graphically in Figure 3.32.) To
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calculate this value, it is useful to divide Equation (3.4.32) by pca, which gives

Lo 2] [egs) (a)”
pca 3K pz(:2 a
= 1.807 K~V¢ &}? (n/a)¥2 (3.4.34)

in which &, = &,/pc? = &g/E,. When this expression is equated to the elastic
formula I,/pca = 1.15 (h/a)?, the resulting expression gives the transition radius-
to-thickness ratio,

% = 0.405 K2 &' = 0.405/D? (3.4.35)

where D = K~Y4 &2 is a material parameter. Values are given in Table 3.6 for a
few aircraft alloys. For these materials, Equation (3.4.35) gives values of a/h some-
what larger than the value 1.15/¢, given by Equation (3.3.74) for incipient hoop
yield. This mekes this procedure for calculating critical impulse definitely conserva-
tive for 1.15/¢, < a/h < 0.405/D? because the plastic flow buckling curve lies
below the elastic buckling curve for a/h < 0.405/D2. This will be made clea: iy a
graphical example. Thus, Equations (3.3.73) and (3.4.32) can be summarized by

1, 1.807 D(h/a)*?,  a/h < 0.405/D?

pea 115 (Wa)? , a/h > 04osp? 436

Figure 3.32 gives a plot of threshold impulse from these formulas for 6-inch-
diameter (152 mm) shells of 6061-T6 aluminum. Observe first that the intersection
of the elastic and piastic flow buckling branches forms a bend at point A that is
concave downward. The dashed lines extended each way from the intersecticn
demonstrate the earlier statement that Equations (3.4.36) are constructed to give
impulse from whichever formula gives the smaller value. Observe also that if the
bend at A occurs to the right of the intersection point B bctween the hoop yield
and elastic buckling lines, then the plastic buckling line lies below the elastic buck-
ling line between points A and B, as stated in the preceding paragraph.

The important result demonstrated by Figure 3.32 is that, for thick shells, the
critical impulse for buckling from this analysis, which allows a finite amount of
buckling motion, is well above the impulse for incipient hoop yield, the conserva-
tive criterion suggested at the end of Section 3.2. For the experimental shells with
a’h = 24, the theoretical and experimental threshold impulse is a factor of 4.2
above the incipient yield impulse.
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FIGURE 3.32 CRITICAL IMPULSE FOR THRESHOLD BUCKLING
FROM SYMMETRIC RADIAL IMPULSE
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3.4.6 Buckling With a Cosine Impulse Distribution

In many practical problems impulses are imparted asymmetrically around the
shell circumference. One asymmetric distribution that has been studied is

I. cos 0, —-}sogf

I = (3.4.37)
T In
0 > < 9 < 3

Profile recordings of shells buckled from this loading distribution are given in Fig-
ure 3.33. The shells are of the same material and dimensions as those in Figure
3.30 for symmetric loads. Buckling is confined to the area near —60 < ¢ < 60
degrees and is of the same form as in Figure 3.30. Based on this observation,
buckling thresholds for this loading are calculated by the same basic procedure just
outlined for symmetric loads.

00" B40 Po-g
1254 mm |

/ 800 oy
0.0%0"
{0.78 mm)
—\_—/__J—\__/\ As-A-1
V— 2000 wps
200 Pa—s
(T 111L|J|1|1|leim,,m
-180 -120 -0 ° © 120 10
(I D Y VO U O N A N RO W O TN TS T O OO O O O -
o 2 4 . s v 14 W " 20 j x84~ mm

GC-8397-1338

FIGURE 3.33 BUCKLE PROFILES AT SEVERAL MAGNITUDES OF COSINE
IMPULSE

Same type shells as in Figure 3.30.
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The first step is to calculate the membrane solution for o, and ¢ as functions
of time under the peak load by using a finite element code. These quantities are
then entered into Equation (3.4.9) under the assumption that the wavelengths are
short enough that v, and ¢ do not vary siguificantly over a few buckling
‘wavelengths. This condition was borne out by results of the example that follows.
Calculations were also made for symmetric impulse so that the ratic of critical
cosine and symmetric impulses could be plotted aginst a/h in Figure 3.34, For rela-
tively thick shells (20 < a/h < 200), in which buckling takes place during plastic
flow, the peak cosine impulse that causes buckling is only about 20% greater than
the symmetric impulse. This is consistent with the experimental results in Figures
3.30 and 3.33. The uniform impulse at a peak buckle amplitude of w,/h = 0.2 is
700 Pa-s. The cosine impulse for this same amplitude is 840 Pa-s, an increase of
only 20%. A similar comparison can be made at 390 and 560 Pa-s, a load incre-
ment of abecut 50%. These comparisons are limited, but the result is clear: the criti-
<al asymmetric load is only slightly larger than the critical symmetric load for plastic
flow buckling.

AR R R N AR EAY 1T
20 I~ 061-T8 Aluminum -
E = 107 psi = 69 GPa :u'::‘;"‘
€, =0.0039 "
K =30
18 I~ -
I.“ 1‘6 poe G el
L. G = 100
ym
14 ~
Plastic Flow
Bucking
].2 b —
10 AN U O NN TN O 1 1Y N O O
10 100 1000 5000
a/h
GA-§M7-1318

FIGURE 3.34 RATIO OF CRITICAL PEAK COSINE AND SYMMETRIC
IMPULSE VERSUS RADIUS-TO-THICKNESS RATIO

As the shells become thinner, however, the ratio between the cosine and
symmetric critical loads in Figure 3.34 increases abruptly with a/h until at a’h >
700 the buckling is entirely elastic for either distribntion and the ratio is 2. The
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oaxtic tatic can bo calcuioted directly by using the membrane solutioa given by Pay-
wa™ fur o cosine lead dofiwnd by Bquation (3.4.37). From Payton’s reselts, the
closely spproxzimated by

C.(f)‘%%ﬁﬂ\ﬂ?. 0K VirKw (AN

The stesia for a sholl uadar symmetric impulee is, from Equation (3.3.29),

tom (1) = 1: sla v 049

According 0 our greceduce for examiniag ducisling enly wader the paak ined,
the eguations of motica for the flexural modes are identical for elther coss and are
given by Equstion (3.3.20) with the spypeopriate forcing terms from Equation
(3.4.38) or Reueilon (3.4.39). The mumicans and Sexural responses are therofore
physically simniler and o dicmasivnal sualysis con Yo performed ia which ihe neigh
borkood of the caeine-eaded shell acur the pouk impulse is ke % be eguivelent
0 2 symanetrically loaded shell of the came thicknsss but kaviag a dilferent radive
and spplied impulse. The equivalent radius 2, snd impulse I, are dotermined 30
that e duration and peak strain of the inward motion in the oguivelent shelt ars
tho seme &3 in the cosine-loaded she'l.

The hoop sirsin in the equivaleat shell is, from Equation (3.4.39),

1
€@ = ;“'7 smr, , 7T,= % (3.3.40)

If tke period in this shell is 10 ke the same as in Equation (3.4.38) for the cosine
load, thes Vir = ¢, or

Ma & (3.4.41)

a s

which givos a, = 8/v2. Similarly, if the pesk strein in the equivalent shell is 10 be
the same a8 in Equation (3.4.35), thea

J11
2

- 3.4.42)
och (

pch
which gives I, = 1,,/V2.
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MuWMEWMMnu-M
(3.3.73) 1o fAnd its critionl buckiing impulse I,. (The asterisk is used in this discas-
sion 10 denote critical values fer threshold buckiing.) This yieids

2 2
I = 115 poa, [—:-l - 113 .nl-}l VI e lge VI (G443

where I, s the critical impuiee for the original shell under symmetric impulse.
Ao, we have shown thet I, = [/VZ in geasral, o0 thet in particuler
I, = 1/Vi. Submissting this into Bquatien (3.4.43) yislds e desired relation
betweea critical cosins impuise add symmetric impulee in the origiasl ring:

low ™ gm (3.4.44)

mmwmmum»mmmwmmma

tic ot o/h = 115/, which gives /b = 288 for ¢, = 0.004. The asymmetric
mummwmmm(uw is
= JE pohe,. Bousting this 10 the critical coslas impulne for buckling gives
m,-zxm(ve’an-nmc For ¢, = 0004, o/h = 406.
mmm<m<aﬁ,~ummmmnwm

impuies. mmuwummmmm

Because this transition between eclastic and plastic buckiing under symmetric
and cosine loading takes place over a narrow range of a/h, the curve in Figure 3.34
is very steep a8 Io,/Io approaches 2. Also, the iransition depends on the choice
for G, in the buckling criterion, i.e., on the amplitude of imperfections in the
shell and the amplitude of acceptable buckie deformations. This is shown by the
socond curve in Figure 3.34, caiculated for G o, = 100. The relationshis between
buckling from symmeotric and asymmetric loads is therefore quiie tenuous for shells
in the range 300 < a/h < 700.
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3.4.7 KEfiects of Strain Ratc Reversal

All the preceding critical load theory for plastic-flow buckling neglects the
effects of inevitable strain rate reversal as the hoop motion ceases and bending ten-
sile strains overtake the hoop compressive strain. To explore these effects, we
analyzed'' the shells of Figure 3.30 with the numerical code SABOR/DRASTIC 6.
In the numerical analysis, responses in modes n = 20 and n = 30 were calculated
tor a symmetric impulse I = 840 Pa-s with initial velocity imperfections y, = 0.01,
that is, with initial velocities in the n'® harmonic equal to 1% of the initial sym-
metric radial velocity, as defined by Equaticn (3.4.12). The mode n = 20
corresponds to the average wavelength of buckies with appreciable amplitude in the
shells of Figure 3.30. The mode n = 30 is near the most amplified mode found by
using Equations (3.4.8) and (3.4.9) from the simple theory without strain rate
reversal, again with initial velocity imperfections y, = 0.01 in Equation (3.4.12).

Results of these caiculations are given in Figure 3.35, in which buckle ampli-
tude is plotted against time for each of the four calculations. At early times, before
strain-rate reversal or significant transfer of hoop energy to buckling, the results
from the simple theory and from SABOR/DRASTIC 6 are reasonably close. As
time increases, results from the code and from the simple theory diverge As
expected, the simple theory overestimates the buckle amplitude, bcth because the
energy transferred to buckling is neglected and because strain-rate reversal tends to
increase the bending stiffness and therefore resistance to buckling. The decrease in
time t¢ at the end of the buckle motion defined by u,(t;) = 0} in the code result
as compared with the simple theory is a direct result of the neglected extraction of
buckle ensrgy from the hoop motion.

The more amplified mode number from the code result is n = 20 rather than
n = 30, in closer agreement with the experiment. The preference for lower mode
numbers in the more complete theory in the code is attributed to the sharper curva-
ture and hence greater bending in the higher mode number. With strain-rate rever-
sal included, this curvature leads to unloading elastically and reloading in tension,
thus quickly retarding the motion, as indicated by the leveling out of the curves
from the code calculations. This leveling out also occurs for the lower mode
number n = 20, but at a later time and to a lesser extent.

The simple theory and code results from n = 20 do not differ greatly until the
very final motion, and then differ only by u factor of about Z in buckle deformation.
The large error, by almost an order of magnitude, occurs when the effect of the
wrong mode number selection n = 30 is superimposed on the wiong terminal
motion. Both effects, of course, are caused by the error in terminal motion
calculation.
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FIGURE 3.35 COMPARISON OF BUCKLE GROWTH WITH AND
WITHOUT STRAIN RATE REVERSAL

Nevertheless, because the buckle amplitudes increase exponentially with the
time (initially, at least) and impulse, and because in the simple theory equivalent
imperfections are tied to experiment, thase errors in amplitude have little effect on
the simple theory threshold buckling predictions. Thus the simple theory critical
impulse formulas give useful estimates for practical applicaticns. The results in
Figure 3.35 show that, for plastic-flow buckling, actual imperfections are probabiy
several times larger than the values used in the simple theory.
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3.5 DYNAMIC PULSE BUCKLING OF CYLINDRICAL SHELLS
FROM TRANSIENT RADIAL PRESSURE®

3.5.1 Approach and Ecustions of Motion

Examples of cylindricai shells buckled in the more general case of transient
radial pressures of varyirg duration are shown in Figure 5.36. The first shell was
subjecied to an impulsive pressure as in the problems just treaied and is buckled
into a high-order wave pattern with n = 45 waves around the circumterence. The
next shell was subjected to a load of lower pressure but ionger duration and is
buckled into a lower-order pattern with buckles correspording to o = 13, In the
last shell, the pressure was reduced still further, and the duration was increased to a
value much longer than the response time of ihe shell. This shell is buckled with
wavelengths corresponding 1o n = 7, close to the n == 6 pattern for static radial
pressure uniform around the shell.

FIGURE 336 DYNAMIC PULSE BUCKLING IN CYLINDRICAL SHELLS
UNDER TRANSIENT LATERAL PRESSURE

Aluminum 8061-T6, a/h = 100, L/2a = 1.

A general theory o cover this entire range of buckling would be very difficult
because end effects must be included in addition to the plastic flow already con-
sidéred for short duration loads. Buckling under long duration loads depends
directly on the length of the shell. Near each extreme in duretion, however, sim-
plifying assumptions can be made to remove cne complication ot the other. For
loads of shori duration, plastic effecis must be treated, but the buckle wavelengths
are short enough that the end conditions can be neglected. We therefore simply
sliow finite pulse durations in the equations aiready used to treat ideal impuise. At
very iong durations, the added complexity of having to include the end conditions

T
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is offset by the buckling’s being elastic; allowing plastic flow is out of the question
for static loads. Critical buckling loads for intermediate duration are estimated by
extrapolation of the resuits from each extreme.

The two simplified theoretical models are therefore called the tangent
modulus model and the elastic modei. The equations of motion for the tangent
modulus model are those already given by Equations (3.4.8) and (3.4.9), with ini-
tial conditions from Equation (3.4.10). For the elastic mbdel we use shallow-shell
Donnell equations for the finite length shell shown in Figure 3.37.

SA-4909-18

FIGURE 3.37 COORDINATES AND SHELL NOMENCLATURE

The Donnell equations are derived in Section 3.5.2. Then static buckling
solutions with these equations are obtained in Section 3.5.3. Dynamic solutions for
both the Donnell elastic model and the tangent modulus model are obtained in Sec-
tion 3.5.4 for loads of decreasing duration and increasing peak pressure. Results
are presented as plots of peak pressur» versus impulse at critical combinations to
produce buckling over the entire range of load durations. In Section 3.5.5 simple
formulss are given for these curves. Experimental results and comparisons with
theory are given in Section 3.5.6.

3.5.2 Donnell Equations for Elastic Buckling

The Dpnnell equations are simple and compact equations because they take
advantage of simplifying approximations that can be made for shell bending in
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high-order modes, with n 2 4. In these modes, each section of shell between
nodes behaves as a shallow shell, that is, a shell with a span much larger than its
height. For n = 4, the arc length between nodes is 360/8 = 45 degrees, with a
span of L = 2a sin 22.5° and a height H = a(1 — cos 22.5°). The height-to-span
ratio is 0.10. This arc length is shown in Figure 3.38. For a shallow shell, the
equilibrium equation is simply that of a flat plate with the addition of a term
because of the shell curvature. For the hoop mode, n = 0, these equations reduce
to the same simple form as for more complete thin shell equations. Thus, the
equations are valid for n = 0 and for n = 4, which are the modes of concern in
the analyses that follow.

N — =

GA-3570-307

FIGURE 3.38 ELEMENTS OF SHALLOW SHELL THEORY

The added force normal to the shell wall because of curvature is found from
equilibrium of the shell element adé in Figure 3.38:

F, = 2N,dx -92"— = N,dx %1 (3.5.1)

in which we have used dy =~ add. The stress resultant N, is taken positive in
tension to conform with conventional plate theory. The element also shows the cir-
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cumferentirl strain associated with radial displacement,

L add—(a+wdd _ _w
ado a

(3.5.2)

The remainder of the Donnell equations come from plate theory. Thus, we first
derive the equations for lateral motion for a plate with coordinates as shown in the
lower right sketch of Figure 3.38. The shell terms of Equations (3.5.1) and (3.5.2)
will be added later.

Moment equilibrium of the plate element in Figure 3.39 about an axis parallel
to the x axis gives

aM
M, + = dxl dy — M,,dy — Q,dxdy = 0

Ix

aM
M, + ay’ dy] dx — M,dx +

which simplifies to
oM oM

y 3 A
5t T~ @ (3.5.3)

Similarly, moment equilibrium about an axis parallel to the y axis requires that

oM, M,
- S
i + 3y Q, (3.5.4)
and force equilibrium normal to the element requires that
an 6Qy azw
—_— 4+ — = —P —~ —_— S,
X 3y P - ph W™ (3.5.5)

With Q, and Q, from Equations (3.5.3) and (3.5.4) and M,, = M,,, the force
equilibrium equation (3.5.5) becomes

M, M oM a%w
—= +2 2 4+ ! = —P + ph— (3.5.6)
ax? dxdy ay? T
To find the relationships between these moments and the displacement w, we
use Hooke’s law and the kinematics of deformation. To a good approximation
o, = 0, so we use Hooke’s law for plane stress.

€ ™= %(0, - voy) , €, = %(o', - voy) (
35.7D

1 o 20 + »)
Y xy G v " Txy

P
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FIGURE 3.339 MOMENT AND FORCE EQUILIBRIUM OF A
PLATE ELEMENT

g ]

{‘.nsider now the bending of an element acted on only by a bending moment M, as
shown in Figure 3.40a. For this form of displacement over lengths large with
respect t :he plate thickness h, the strain ¢, in the y direction is zero. Withe, = 0
in Equation (3.5.7) we have

¢ =0 , oy = vo, (3.5.8)

< therefore

E

I

o, = Ee, + vio, = T €x (3.5.9)
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(a) BENDING

AN

(b) TWISTING

il ; & M el i e

GA-3570-309

FIGURE 3.40 KINEMATICS AND STRESSES FROM BENDING AND TWISTING

From the kinematics of the deformaiion in Figure 3.40a, the strain at a fiber <

located a distance z from the middle surface is €, = —232w/9x2. The bending
moment is therefore

2
E 9w
M,dy = —lzz‘l_vz z ox? dzdy

3 -G—XT TZ— - =D — (3.5.10)
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where

Eh’
D= ——— 3.5.1
12(1 = »?) ¢ D

The stress in the y direction, caused by the Poisson effect and the zero strain condi-
tion, also gives rise to a bending moment. With o, = vo, from Equation (3.5.8),

this moment is of the same form as in Equation (3.5.10), so we can write
immediately

3w
ax?

M, = —D (3.5.12)

Bending in the y direction is similar. The total bending-curvcture relationships are
therefore

92w 92w
M, = -D + 3.5.13)
X ze v ay2 (
9w 9w
M, = -D ay? + ax? (3.5.14)

The relationship between the twisting moment and shear deformation is
shown in Figure 3.40b. The originally rectanguiar elcment with sides dx and dy
represents a thin sheet of material at a distance z from the middle surface of the
plate. In-plene displacements are u and v in the x and y dirsctions, respuctively.
The shear strain of this element is

- Ou o1 8 1
Yy oy dy dy + 9x dx dx

o3, 9

S
3y Ox (3.5.15)

The corresponding shear stress is
T = G %;l + %}"-] (3.5.16)

The section view through the plate along a plane parallel to the x axis shows that a
rotation of the middie surface through an angle — dw/dx produces a displacement
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at z equal to
S— L1 (3.5.17)
9x
Similarly, the v displacement is
ve 3% (3.5.18)
ay

With these expressions for u and v, the shear stress in Equation (3.5.16) is given
by

9w
9xdy

T = —2Gz (3.5.19)

Integration of this shear stress through the wall thickness gives the twisting
moment.

alw
oxdy

2
Gh® aw _ _ _
M, 1./2 27 5y dz 6 3xdy D1 - »)

(3.5.20)

Equations (3.5.13), (3.5.14), and (3.5.15) for bending and twisting momenis
are now substituted into equilibrium Equation (3.5.6) to obtsin an expression
involving only the lateral displacement w and load P.

92 | 9w 3w O'w 3% | 9%w 9w
-D 4+ -2D(Q - -D — -+
ax|oxd ay2] U= ey " Pay oy “ e
9w
= —P + ph W
After simplification, this becomes
'w d'w . 9w 9w
DAY 4 p2¥ L pI¥ L W& ¥ op
axt ax2ay? ayt | P ad
or
DV* dlw
w o+ ph S5 =P (3.5.21)
where

2 2 )2
V4 - V292 = [i— + i—] (3.5.22)
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This is the dynamic equilibrium equation for lateral moticn or a thin, flat plate with
no force resultants in the plane of the plate.

To treat buckling, we must also include thrust in the plane of the plate, just as
we included thrust aiong the axis of a bar and circumferential hoop forces in a ring
or long shell. We must also include in-plane forces that arise because of middie
surface stretching and compression ac the shell bends in the presence of its initial
curvature [of radius a, see Equation (3.5.2)]. The general formulation for in-plane
forces is first introduced for the flat plate, and then the shell terms of Equations
(3.5.1) and (3.5.2) are added under the assumption that the region of the shell over
which the equations are applied is shallow, as discussed earlier. !n the general for-
mulation, in-plane forces are taken positive in tension, according to the convention
ol plate theory. When in-plane compression is applied by external loads, these are
introduced as negative quantities so that buckling thrusts are positive quantities,
consistent with the convention throughout this text.

Equilibrium of in-plane stress resultants in the x direction in the lower sketch
in Figure 3.41 requires that

aN, aN,,
+ - Q.
o 3y 0 (3.5.23)
Equilibrium in the y direction requires
N oN
on, + —L£ =0 (3.5.24)
dy ax

From the upper sketch, the N,-related forces introduce a net force in the z direc-
tion because of the small slope of the plate element and the smail change in slope
from one side of the element to the other. The net force in the z direction is

dx — N,dy aw

oN, aw ’w
[N, + P dxldy |8x + ox P

With terms higher than second order omitted because they will vanish in the limit-
ing process, this simplifies to

3w aN, Jw
N, 2 dxdy + i B dxdy (3.5.25)

A similar argument for N -related forces leads to a net force in the z direction equal
to

2 oN
W gxdy + = ¥

*;y-:; 3y dy dx dy (3.5.26)
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FIGURE 341 EQUILIBRIUM OF IN-PLANE STRESS RESULTANTS
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The shear force N,,dy and its incremented counterpart acting on the opposite
side of the element also give a net force in the z direction because they are acting
at angles dw/dy and dw/dy + (92w/dxdy)dx, respectively. After simplification,
this net force is given by

62\\' 8ny i\!_
Ny %3y dxdy + ax Oy dxdy
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The force N,,dx and its counterpart result in another force in the 2 direction given
by an anslogous expression. The total force in the z direction from shear (noting
that N,, = N,,) is

0 w QN,, ;.!. ON Q'_
2N, 2 ayclxdy + o 3y dxdy + -———"lay x dxdy (3.5.21)

The sum of the forces from expressions (3.5.25), (3.5.26), and (3.5.27) is
found to invulve only the curvature and twisting terms, because the force system
acting at a coastant slope vanishes by virtue of the in-plane equilibrium Equations
(3.5.23) and (3.5.24). This sum is added to the load P dxdy acting on the element.
Equilibrium Equation (3.5.6) is then replaced by

M, 3™ 3°M

v o, Y o
ax? +26xay dy?
e+ N, 2% 40N, K PR A I o Ry )
x a3 Y axdy Y ay? YY)

Similarly, Equation (3.5.21) is repleced by

9w 93w 3w 3w
DViw +~ — - + —_— —_— .S.
w + ph ™ P + N, ox? + Ny axdy + N, a 3.5.29)

This is the flat plate equation including in-plane forces. It is modified into the
shallow cylindrical shell equation by adding the curvature term N,/a from Equation
(3.5.1) and changing to the x,8 shallow-shell coordinate notation shown in Figure
3.37, with 9y = ad0. The result is immediately writter:

3w alw atw M,
4 _ g v _ v wv_ g N T
DV w N‘ axz 2N!. aaoax N. 32603 a
+on W L p (3.5.30)
PR 3 h

Ii is now convenient to separate in-plane forces uhat result directly from applied
loads and in-plane forces that arise from stretching as the shell defoims in the
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flexural modes. Thus, we define
N, = -N, + N;
N, = —-N; + N, (3.5.31)

N, = —N,, + N;,

where the barred quantities are from applied loads and the starred quantities are
from flexural stretching. As mentioned previously, the applied load terms are
defined such that compression is positive.

The stretching terms are found by applying the compatibility condition to the
middle surface strains. These strains are

du ov w du v I
€y ax ’ €y ‘a‘ a ) Y xe .ao + ax (3').32)

The terms from in-plane middle surface displacements u and v are analogous to
those for a general sheet element within a plate o- shallow-shell wail, as given in
Figure 3.40. The additions! circumferential strain —w/a, from Equation (3.5.2),
occurs because of the initial shell curvature as shown in Figure 3.38. For a piate,
this term is absent and the three strains in Equations (3.5.32) are defined by only
the two displacements u and v. Hence the s‘rains must be related in a special way
so that all three of Equations (3.5.32) are satisfied. This relationship is the familiar
compatibility condition of pirne elasticity. Similarly, when the shell term w/a is
added (w is specified bv the flexuse) the strains musi again be related, but in
another way. Thus, the compatibility conition becomes an expression for deter-
mining the middle strface 3t.ins caused by shell flexure.

The form of Equations (3.5.32) suggests immediately that the compatibility
condition can be expressed by twioe Jdifferantiating each of the equations, the first
with respect to 8, the second with respect to x, and the third once with respect to x
and once with respect to @ (iri each 6 differentiation we multiply by 1/a 10 maintain
dy = a90). The first of these differentiaed equations is added to the second, and
then the third is used 0 obtain dnally

aze, 81¢, - 027"
alde? éx? 29x90

2
-~ % :T‘,' (3.5.33)

Since our objective is to find the in-plane stress rezultants, this compatibility rela-
tion is now expressed in terms of these resultants. Witk Hooke's law, Equation

S U Ao T <
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(3.5.33) becomes

2
;Taa_o‘i(ﬂ'x— l'a’p_) + ‘8%7(0.” vo',)
azfxy E 3w
= 2{1 + v) oy " -5;7 (3.5.34)

The stress resultants from flexure are N; = ho,. Ny = ho,, and N;g = hr,,.
It is convenient to eliminate the shear stress resultant by using the in-plane equili-
brium Equations (3.5.23) and (3.5.24). The first is differentiated with respect to x,
the second with respect to y, and then the two are added. The resulting equation
(with 8y = ad#0) is substituted into Equation (3.5.34) to obtain finally

Eh 9w

2 [ ] [ ] - zn g w
V4N, + N,) T ax? (3.5.35)
where
2 2
vi. &, 0
ax? al8¢?

Compatibility Equation (3.5.35) and the equilibrium Equatinns (3.5.23) and
(3.5.24) are sufficient 10 determine N, N,, and N,,. The equilibrium equations
are satisfied identically when the stress resultants are expressed in terms of a stress
function F:

. 2 . . 2
"f‘z_e%» N.-%;l:’ ' N”_____I:.F“ (3.5.36)

When these expressions are substituted into Equation (3.5.35), we find that to
satisfy compatibility F must be a solution of

|
véF - - Eb & (537
a

The complete Donnell equations consist of this equation plus shallow shell
Equation (3.5.30) with in-plane stress resuitants from Equations (3.5.31) and
(3.5.36). We now use the seperation of these resultants into twe parts,
-N am‘l N°. From Equations (3.5.36) and (3.5.37), we sse that the stress rosul-
tants N from flexure are linear in w. Thus, when they are introduced into Equa-
tion (3.5.30), all produce terms of second-order in w except for the term N, /a.
The second-order terms are small 2ad are omitted. Then Equations (3.5.31) substi-
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tuted into Equations (3.5.30) give the second Donnell equation
= 0w = 9w = 3w N,
4 g — + 2
DViw + N, ™ + 2N,, pryTys ¢ 797 "
l -a—zf_ -az_w - [ 4
v + ph v | (3.£.38)

The direct-loading term ﬁ, is the circumferential force from motion in the hoop
mode. Thus, from Equation (3.5.2) for n = 0 we have

N, = hoy = —oi_ Yo (3.5.39)

1-»?) a
expressed as positive in compression according to our convention.

To consider buckling from an initially imperfect shane described by w;(x,0),
Equation (3.5.38) becomes .

— a! — 62
4 3 ‘ 9 .
D Vi + N, Y (w + w;) + 2N,, YT w + w)
= 8 N, 1 &%F 3w _
N, 1597 (w+w) + " e + ph >0 P (3.540)

The shape w; does not enter into the term DV *w because this term represents
lateral force arising from flexural stresses, and by definition the shell is unstressed
in the initially imperfect shape w;,. Similarly, the introduction of w; does not affect
Equation (3.5.37) for stress function F.

RS Ml e T G RS

3.5.3 Feurler Serles Selation--Static Buckling

We proceed now to obtain both static and dynamic solutions to the Donnell
equations subject to boundary conditions of simple supports at the ends of the
cylindrical shell. With simpie supports, the displacement w and axial bending
moment M, vanish at x = 0 and x = L. Thus,

w=w/ax! =0 a x=0,L (3.5.41)

The curvature condition follows from Equation (3.5.13) and frem the observation
that, at the boundary, w is zero at every point around the circumference, so
92w/a2d0? = 9?w/dy? = 0.
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Conditions (3.5.41) are satisfied by the Fourier series

wix, 6,0 = w0 + "?"__',‘ ..};, Yme® sin BT sinno (3542
wi(x,0) = mz: gl 8mn Sin m:-x sinné@ (3.5.43)
P(x,0,t) = P (D) + mz:l nz:! Py (D) sin ml:" sinn#é (3.5.44)
F(x,8,t) = mz.:l gl Fqn Sin m:x, sinné@ (3.5.45)

The form chosen for P is appropriate to satisfy Equation (3.5.40). Similarly, the
form for F is appropriate to satisfy co:npatibility Equation (3.5.37) and hence also
Equation (3.5.40). Each Fourier term in Equation (3.5.42) describes a deformed
shape consisting of m half-waves in the axial direction and n full waves around the
circumference of the shell. Addition of sin(mwx/L) cosn® terms, which also
satisfy the boun<ary conditions and differential equations, would cause no increase
in difficulty.

Substiqution of Equation (3.5.42) into Equations (3.5.41) confirms that the
boundary conditions are satisfied term by term except for the hoop mode term
w,(1). For this term we neglect the effect of the end supports and assume that the
hoop motion is uniform along the length of the shell. This is equivalent to neglect-
ing axial flexure and calculating hoop motion with simple membrane theory. This
is a reasonable approximation and is commonly made in shell buckling theory.
Flexural stresses in the hoop mode induced by the end supperts die off cxponen-
tially with distance from the ends, the decrease being more rapid for thinner shells.
This approximation gives a hoop thrust ﬁ. uniform along the length of the shell,
vhich is an acceptable approximation because bucklirg deformation near the ends
of the shell is small and an error in N, in this region is unimportant.

The Fourier expansions are now substituted into differential Equations
(3.5.37) and (3.5.40) to obtain equations of motion for the modal amplitudes w,
and wg,. Afrer substitution, all terms multiplying each shape function
sin(mwx/L) sinn@ arc gathered together and set to zero, because the shape func-
tions are independent (orthogonai). That is, since no shape function can be
expressed in terms of the others, the complete equation is satisfied only if the
coefficient of each function is identically zero. Similarly, the group of terms muiti-
plying unity (the hoop mode shape function) is also set to zero.
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For the hoop mode, the result is
Eh W, 3w,
~————— —— + ph == = P (1)
-2 a PR o
or
9w E P,V
> + o = ——— (3.5.46)
a2 (- vDpal "° ph
This equation is simplified by introducing dimensionless quantities
T " , " , P h P (3.5.47)
where ¢ = E/(1 — »?)p. Then Equation (3.5.46) becomes
i, + u, = P, (3.5.48)

where dots indicate differentiation with respect to 7. These dimensionless quanti-
ties will be used in formulating the final dynamic equations of motion, but for the
present we retain the original dimensional variables.

For the m,n terms, the coefficients F,,, are first determined in terms of wy,,
from compatibility Equation (3.3.37), which yields

2

L! 52‘

Fon = — — |-

_m’z! nl
a L?

Eh m’w’l
wmn

It is convenient to introduce a circumferential wave number parameter 8 = nL./wa.
Then this equation becomes

2
F,, = -Eai % m2(m? + 822 w,, (3.5.49)

Equations (3.5.42), (3.5.43), (3.5.44), and (3.5.49) are now substituted into Equa-
tion (3.5.40) to obtain

' Eh Wo n?
D ‘L—" (m? + 8w, + —(1—-:-;—2')— - ——37 (Wpn + 8,0)

1 222) Ep L2 ,, - 3w
- :l— -@i—;'--]-—a—-'—r-z-m11,m2+ﬁz) 2 Wpn + oh atzm = P, (3.5.50)
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These are the dynamic equations to be used for loads of long and intermedi-
ate duration. In the extreme of loads with very long duration and no sudden
changes, they yield the static buckling solution. In this extreme, derivatives with
respect to time can be neglected. For static buckling, the hoop mode Equation
(3.5.46) is then simply

P, = ‘('1_%2‘)" {2 (3.5.51)

This is now substituted into Equation (3.5.50). After dividing through by Dw4/L4,
the coefficient of w,,, in the resulting expression is

L2

4 Po
(m2 4802 + 2 X7 mimi+ g7 - o Logr G5

Da‘¢ =

The other terms involve the shape and load perturbations &,,, and P,,. No matter
how small the perturbations are, if the above coefficient of wy,, vanishes, the modal
amplitudes w,, become unbounded. The values of static loading pressures P, at
which expression (3.5.52) vanishes are eigenvalues for static buckling. The lowest
value is the static buckling load.

These eigenvalues can be expressed in terms of the two combinations of shell
parameters that appear as coefficients in expression (3.5.52). The first group is a
dimensionless shell parameter

Eh L* 120 — »2) L4 12 .,
R L L AEAR Y / 3.5.53)
Da? »* h2a? nt nt (

where

Z = (1 - »)V2LY4gn (3.5.54)
The second group is a dimensionless pressure parameter

P,aL? - oshL?

k -
¢ Dx? Dxn?

(3.5.55)

The subscript & indicates that the loading is lateral pressure and hence produces
middle surface siress oo, in the 6 direction. In terms of these parameters, the
equation for critical pressure, found by setting expression (3.5.52) equal to zero, is

(m? + B2)?2 + 1222 m*

o TR (3.5.56)
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By inspection, kg, is smallest when m is smallest. Hence, buckling modes of
concern all have m = 1 half-wave in the axial direction and

. 2)2 2
-4+ g, 122 L (3.5.57)

ke g2 =t 11 + B

The static buckling load is given by the minimum value of k, for a given shell -

parameter Z. Thus, the general static solution is found by minimizing Equation
(3.5.57) with respect to £ aad then expressing the minimum value of k, as a func-
tion of Z. For a given shell, of course, 8 can take on only discrete values
corresponding to integer values of n. '

Figure 3.42 gives a graphical representation of Equation (3.5.57) for several
realistic values of Z. The upper abscissa is 8, with corresponding values of Z given
on each curve. The lower abscissa gives exampie values of n for shells with L/a =
2, corresponding to experimental results to be given in Section 3.5.6. With L/a =
2, n = wB/2 and the values of Z are to be associated with values of radius-to-
thickness ratio ranging from 25 to 500. The allowatble values of k, for L/a = 2 are
indicated by the solid points on the curves.

Two observations are apparent from Figure 3.42. First, the minimum load
parameter k, does not occur at the lowest value of n. Even for the thickest shell,
with a/h = 25, the minimum occuis at n = 4, As the shells bccome thinner, n
increases. For a/h = 200, n,, = 7. The increase in n as the shells become
thinner occurs because part of the strain energy of deformation is in bending and
part is in stretching. To minimize the total strain energy, the thinner shells deform
in higher modes because in these shells bending requires less energy than stretch-
ing. As the shells become longer, n is reduced because n = ag/wL and the values
of B at the minima do not shift rapidly with Z (they vary as Z'*, as will be shown).

The second observation is that even though only discrete values of B are
allowed for a given shell, the minima are flat enough that the continuous curves
give good approximations to the values of k, at the lowermost discrete points. Only
for very long, thick shells, which buckle with n = 2 or 3, is this a poor approxima-
tion. These shells are not considered here because the Donnell equations are
inaccurate for n > 4.

It is therefore useful to obtain an explicit expression for k, at the minima of
the continuous curves. With 8 considercd as a continuous variable, Equation
(3.5.57) can be differentiated to find the minima. Setting dk,/d82 = 0 yields

(3.5.58)

A + gyt = 122 [1 + 3pzl

wt B -1

¥
k4
£
3

3
i
3

3

E

3




176

8= nlL/na
0 1 2 3 4 5 ] 7
70
T
60 —
2 =
s/h =
m p—
Ns 40 —
N\
-
o ®
b
xe 30 —
20 - 2
2=0 -2 2
10 -—
(Values of n and a/h are tor L/a = 2) f
. | 1 ! L |
] 2 4q 6 8 10 12

GA-3570-312

FIGURE 342 STATIC RADIAL PRESSURE FACTOR VERSUS 8
WITH 2 AS A PARAMETER

To obuin a simple explicit solution to Equation (3.5.58), observe in Figure 3.42
that for Z = 100, g2 >>1 at the minima of the curves. With this approximation,
Equation (3.5.58) yields B2 = (6Z)"%/=. This expression for 82 substituted into
Equation (3.5.57) gives for k, at the minima i

k, = ‘?"?- ZV2 = 1,040 22 (3.5.59)
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With the definitions of k, and Z in Equations (3.5.54) and (3.5.55), Equation
(3.5.59) gives the static buckling pressure:

Dr? 46 (1 - )L

P, = al? 3w a/1p/2

5/2
__mk___ a|n

9(1 — ”2)3/4 [ l = (.92 EL [a] (3.5.60)
The numerical value for the coefficient in the last of Equations (3.5.60) is for y =
0.3. This formula is accurate for Z in the range

2

(3.5.61)

a
< < =
100 < Z h

The lower limit assures that 82 > > 1, as already discussed. The upper limit
assures that the shells are not so long that they buckle into n € 3, beyond the
range of the theoiy. To derive the upper limit, we use g2 = (6Z)VYx with 8
expressed in terms of n. Then

(o] _ &
l‘ll’a 1r2

or

LRl

in which the final expression is the definition of Z. With n = 3 this gives an upper
limit on allowable L/a for the present theory:

L _ 6m¥1 ~¥)'2? lal _ a
comuzn o]

al

To express this inequality in terms of a/h and Z, we muitiply it by (1 - »2)2(a/h)
so that the left side becomes Z and the right side becomes 0.66(a/h)2 In Equation
(3.5.61) the coefficient 0.66 is roundeu to unity because the error in P, is still smali
within this range.

—————
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3.5.4 Critical Pressure-Impulse Curves for Dynamic Buckling

We return now to the dynamic equations of motion and consider dynamic
buckling from finite duration pressure pulses. Two representative pulses are the tri-
angular and exponential pulses in Figure 3.43. The triangular pulse is defined by

The exponential pulse is defined by

0 t<0
P(H) = [ P et LS 0 (3.5.63)

PRESSURE P(t) PRESSURE P(t)

/ Plt) = Pm..w

————e -
T TIME ¢ T TIME 1§

(a) TRIANGULAR (b) EXPONENTIAL

Ga-3220-1%

FIGURE 343 PULSC SHAPES

For either pulse, with the shape specified, any particular puise can be charac-
terized by two parameters that specify the pressure and time scale factors. Con-
venient parameters are the maximum pressure P, and the impulse intensity I per
unit area, given by the area un.er the pressure-time history as indicated in Figure
3.43. For the triangular pulse, I = P_T/2. For the exponential pulse I = PT.

These are convenient parameters because, at the extremes of very short and
very long durations, one or the other retains physical meaning and is the dominant
parameter. For very short durations, only the impulse is important and the buck-
ling problem reverts to that for impulsive loads as discussed in earlier sections. For
very long durations, only the maximum pressure is important.
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Long duration buckling is not precisely equivalent to the static buckling of
Section 3.5.3 because even for long durations we are considering pulses that have a
sudden jump in pressure at t = 04+. However, we will see that for ductile materi-
als the oscillations produced by the jump do not significantly change the critical
pressure for permanent buckling. Therefore, as T — oo, the critical pressure
epproaches the static buckling pressure given by Equation (3.5.60).

For loads of intermediate duration, both P, and 1 are important; furthermore,
buckling depends on puise shape. However, the dependence on shape will be
shown to be small as long as the shape is reasonably simple and does not differ
widely from the shapes in Figure 3.43. For example, the two pulses shown have
the same values P, I and the buckle motion for each will be found to be very
similar.

For the dynamic problem it is convenient to use the dimensionless variables
introduced in Equation (3.5.47). Then we use Equation (3.5.48) for the hoop
mode, and Equation (3.5.50) for the flexural modes is similarly simplified. Also,
from the result of the static solution we consider only modes with m = 1 half-wave
along the shell length. The equations of motion for the dynamic problem are then

i, + u, = P, (3.5.64)

i+ [a¥n? + 7RYLD 2+ (1 = »?) (ra/L)* (2 + wRYLD 2~ 0t u,
- P, + nlus, (3.5.65)

where a? = h%12a? and the subscript 1n has been replaced by simply n. When
the expression in the bracket multiplying u, is set to zero, the result is Equation
(3.5.58) for static buckling.

The form of Equations (3.5.64) and (3.5.65) is similar to that for Equations
(3.4.8) and (3.4.9) in the tangent modulus theory. Each set consists of a single
equation for the hoop mode and a group of mutually exclusive equations for the
flexural moddes that contein the hoop mode amplitude as a parameter. Fach set is
integrated numerically for motion starting from rest, with initial conditions

ua0) = 3,00 =0, n=0,23... (3.5.66)

In the examples, imperfections are taken only in initial shape, described by §,,
because they are expected to dominate (for the tangent modulus theory, as shown
in Section 3.4) or give results similar to those for imperfections in load (described
by P,).
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Results for the longer duration loads, for which Equations (3.5.64) and
(3.5.65) apply, have the same basic feature as for impulsive loads as found with
Equations (3.4.8) and {3.4.9). A group of modes becomes highly amplified as the
load increases, and buckling can be characterized by motion in the most amplified
mode. An essential difference is that the number of highly amplified modes for
long duration loads is much smaller than for impulsive loads. This is shown in Fig-
ure 3.44 for an example shell of 6061-T6 aluminum with a’/h = 100 and L/a = 2.

1
T T T T 1T T 7T
200 k-  TANGENT -
800 MODULUS
c THEORY
< 600 - -
g
S 400 - 1 = 92 Pa-s —
200 — -
o L
0 40 80 120 160 200

| | |

ELASTIC THEORY

1 = 3100 Pa-s

Pm = 386 kPa _J
-

30 40
GB-5733-42A

FIGURE 3.44 AMPLIFICATION FUNCTIONS FOR THE TANGENT
MODULUS AND ELASTIC THEORIES (6061-T6 aluminum
shell, a/h = 100, L/a = 2. Examples are for very high
aniplification, so impuise and mode numbers in tangent
modulus theory are somewhat larger than those in Section 3.4.)

The amplification function for the tangent moduius theory has substantial
values for mode numbers ranging from about 60 to 120. However, the
amplification furction for long duration loads is =2ssentially zero except for n = 6
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(which is the staiic buckling mode in this example). As the puise duration is
decreased and the peak pressure is increased, this mode number increases but only
to about n = 8 within the elastic range of the long pulse theory. For thinner
shells, several modes are highly amplified; however, the number of ampiified
modes is always very small compared with that for the tangent modulus theory
because the parameter /o ¢/ E,, which determines the mode number, is about 10
times larger in the plastic range.

Another feature of buckling under long duration loads arises because of the
step in pressure at t = 0+. This step causes oscillations in the hoop mode with a
peak amplitude about twice the pseudo-static response to P,. With no damping,
these oscillations cause autoparametric vibration buckling similar to that described
in Section 3.3.4 for impulsive loads in the elastic range. However, this vibration
buckling motion cannot cause permanent plastic buckles because the motion is
damped out by a small amount of plastic deformation during each osciliation of the
flexural mode. In calculating critical loads for buckling, we therefore consider only
modes that grow essentially monotonically (and exponentially) with time.

Figures 3.45 through 3.50 give critical curves of peak pressure and impulse
intensity for pulse loads that cause buckling. Along each curve the amplification in
the buckle mode with most growth is a constant. Figure 3.45 gives the complete
critical load curve corresponding to the example amplification curves in Figure 3.44.
The numbers along the curves are the mode numbers N of the most amplified
modes. Along the branch for each theory, N increases as the peak pressure P,
increases. The curves are dashed near the cusp-like intersection between the two
branches because the assumptions for the theories break down in this region. On
the elastic branch, the hoop stress exceeds the elastic limit when P, exceeds about
half the static yield pressure. This is indicated by the tic marks on the curves. On
the tangent modulus branch, as P, is reduced, the amount of plastic flow becomes
so small that strain reversa! occurs with very little buckle growth. Actual buckle
motion near this cusp is very complex and requires a numerical theory. No
rigorous calculations have been undertaken for this region.

Because the two approximate theories are either entirely elastic or entirely
plastic, there is an order of magnitude change in mode numbers from one branch
to the other. as already mentioned. This order of magnitude change is also
observed experimentally, as shown by the many examples throughout Chapter 3,
and in particular by the examples in Figure 3.36. The nature of the transition from
one form of buckling to the other has not been observed experimentally because of
the special facilities required and the expense of running experiments in the transi-
tion region. Limited experiments described in Section 3.5.6 show that buckling in
the cusp region is biased toward the low-order buckling of the elastic theory, as one
might expect because early strain rate reversal results in nearly elastic response.
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' FIGURE 345 CRITICAL CURVE FOR BUCKLING OF SHELLS
IN FIGURE 3.36 (exponential pulses, 6061-T6
aluminum, a = 3 inches = 76 mm, a/h = 100, L/a = 2)

Figure 3.46 shows that the value chosen {or critical amplification does not
strongly influence the critical load curves. The largest diff :rences caused by chang-
ing the amplification by two orders of magnitude occur in the cusp region, where
the theory must be extrapolated anyway because of the limitations just discussed.
In the examples throughout this section, the nominal amplification fur buckling is
1000 because the calculations were made several years before the experimental
results on equivalent imperfections given in the preceding sections were available
More appropriate amplifications fo. threshold buckling are in a range near 20, but
the conclusions are unchanged and critical loads in the examples are only slightly
kigher than in Section 3.4. Final formulas, given later, are based on an
amplification of 20.
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Figure 3.47 demonstrates that changes in puilse shape have a minor effect on
critical curves. (This is a general result for many types of response to pulse loads.)

Figurcs 3.48 and 3.49 show the effect of :zhe!ll thickness. In Figure 2.48, a/h
is varied from 24 to 250 and each critical curve is normalized to the critical ideal
impulse I, and the critica! step pressure P, for that value of a/h. In this form the
great change in shape of the curves is made apparent. For the thickest shell, the
curve remains close to the P,,1, asymptotes for any pulse duration. (Ir this log-log
plot, curves of constant pulse duration are straight lines at 45° slope.) As a/h is
increased, the curves move away from the asymptotes over a much wider range of
pulse durations. Also, the elastic branch becomes more dominant for the thinner
shells. In Figure 3.49 the same curves are given in dimensiona! units. In this plot
the broad ranges of peak pressures and impulses are apparent. Four orders of mag-
nitude in both pressure and impulse must be spanned in order to display the curves
(and to perform experiments).
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The final examplc, in Figure 3.50, shows the effect of shell length. Only the
elastic branch is affected by shell length. The branch moves to lower pressures as
L/a is increased from i to 5. The result is to broaden the P,I curve in a manner
similar to the broadening with increasing a/h.
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3.5.5 Simple Formulas for Critical Curves

The general form of the critical buckling curves in the preceding examples is
given in Figure 3.51 and can be described by a few simple formulas. The curves
consist of two branches, one from each theoretical model, each of which can be
approximated to an accuracy of about 20% by simple rectangular hyperbolas of the
form

Pm Im
——— — — = ‘5.67
[PA 1”]:‘- l] 1 @3 )

where P, and I, are the asymptotic values of each hyperbola.
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For the tangent modulus branch, these asymptotes are given by

Pr = 0.75 0, h/a (3.5.68)

1.807 pca D (h/a)¥? a/h < 0.405/D?

fr = 1.15 pca(h/a)? a/h = 0.405/D? (3.5.69)

where D = K~Y4¢)/?is a material property as defined in Section 3.4.5 (the tilde is
added here to distinguish D from the shell stiffness parameter D). The formula for
Pt is an empirical result of the numerical integration and gives a pressure asymp-
tote equal to three-fourths of the yieid pressure. The formula for I is derived in
Section 3.4,
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For the clastic branch, the asymptotes are given by

5/2
Pe= 092 E [%] |-;l| (3.5.70)

Ig= 3 pca

2
ﬂ! (3.5.71)
a

The formula for Pg is the static buckling pressure given by Equation (3.5.60). The
formula for Ig is the result of the numerical integrations performed with the Don-
nell equations and gives amplifications near 20 rather than 1000 as in the examples
in Figures 3.45 to 3.50. It has the same form as the elastic formula for Iy, which
applies for very thin shells. The coefficient is 3 rather than 1.15 because, for Ig,
formula (3.5.71) takes into account the finite length of the shell. Thus, formula
(3.5.71) should include some dependence on shell length, but the dependence is
small as can be seen in Figure 3.50 for 1 < L/a < 5.

Lines at 45° in the log-log plot of Figure 3.51 are liries of constant pulse dura-
tiuvn. For example, the exponential pulse has characteristic time T = I/P, so the
lines of constant duration are | = TP. The two lines drawn through the intersec-
tions of the asymptotes of each branch define characteristic times Tt and T given
by Ty = 1;/P1 and Tg = Ig/Pz. From Equations (3.5.68) and (3.5.69) the
characteristic time for the tangent modulus branch is

l~) h 1/2
T, = 24 2= [—

1/2
- =242 K-'“e;'“[—’ll (3.5.72)
Cey a Cc a

However, in the numerical examples it was found that variations in X moved the
horizontal pressure asymptote slightly from the value given by Equation (3.5.68) in
such a way as to compensate for the small variation in Tt with K given by Equation
(3.5.72). Thus, a better expression for T, with K in the range 10 < K < 60 typi-
cal of engineering metals, is simpiy

1/2
I ;' (3.5.73)

= 21h
metfd

Similarly, from Equations (3.5.70) and (3.5.71), the characteristic time for the
elastic branch is

L 1/2
a .
Tg =3 = lh] (3.5.74)
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From Figure 3.51 we see that, if the time constant T of the applied pulse is
much shorter than Ty, the load appears impulsive to the shell, and if T is much
larger than Tg, the load appears quasi-static. Loads with durations near or between
Tt and Tg are quasi-impulsive, and both pressure and impulse are important to the
response. As shells become moderately longsr and thinner, Ty and T become
more widely separated (see Figures 3.48 and 3.50) and the range of quasi-impulsive
loads increases. Conversely, for short, thick shells, the tangent modulus and elastic
curves move closer together and only a small range is quasi-impulsive. At the
other extreme, if the shells are very thin, all buckling is elastic and only the elastic
branch exists.

As an example, for 6061-T6 aluminum alloy, ¢ = 5000 m/s and E," ! -
{0.0045)/2 = 0.067. Then, for a/h = 100, Tt = 0.30 ms per meter of radius.
Thus, even for a shell 2 meters in diameter, the pulse duration must be a fraction
of a millisecond in order 10 be impulisive. At the long duration extreme, Tg = 6.0
ms per meter of length. If the shell is 2 meters long and 2 meters in diameter, a
load with T = 5Tg = § X 12 = 60 ms appears quasi-static. The total pulse dura-
tion with sensible pressure for an exponential pulse is about ST. The corresponding
total sensible puise duration is therefore 300 ms. Thus, pulses lasting only a frac-
tion of a second are essentially static even for a shell large enough to stand in.

The range of quasi-impulsive loads for this shell extends somewhat beyond
the range 0.30 < T < 6 ms. From the shape of the P,I curve in Figure 3.47 for
a/h = 100, this range, for which both peak pressure and impulse are important to
shell response, extends over more than two orders of magnitude, from about 0.1 to
20 ms. Because of this broad range of quasi-impulsive response, many experiments
are required to characterize the complete dynamic buckling behavior of shells.

3.5.6 Experimental Results and Comparison with Theory

A limited number of experiments have been performed to demonstrate that
the essentials of the theory are correct. Experiments at the impuisive extreme are
given in earlier sections of the monograph. Here we concentrate on mid- and
long-duration loads. Dynamic loading was applied by explosives, and static loading
was applied hydraulicaily. The explosive techniques are illustrated in Figure 3.52
for both asymmetric and symmetric loads. While the theory in the preceding sec-
tions is limnited to symmetric loads, in application many loads are applied by blast
waves that impinge laterally from one side of the shell.

The techniques shown cover load durations ranging from long (quasi-static),
provided by shock tubes as shown in the upper photographs, to intermediate
(quasi-impulsive), provided oy frez-standing spherical and imploding cylindrical
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charges as shown in the central photographs, to very short (impulsive), provided by
sheet explosive in direct contact with a rubber shock attenpuator placed on the shell,
as shown in the lower photographs. Resuits of the direct contact experiments are
those given in Figures 3.30 and 3.33.

In 2l the experiments described here, the shells were made of 6061-T6 alumi-
num alloy and had an outside diameter of 6 inches (152 mm). The shells were
held in place by clamping them to heavy end plugs with external straps, which can
be seen in the upper photographs in Figure 3.52. The plugs were 1.5 inches (38
mm) thick, so for an unsupported length betweei plugs of 6 inches (152 mm) the
shells were cut 9 inches (229 mm) long.

For asymmetric blast loading, the shells were held with a central shaft running
through the end plugs, with the axis of the shell perpendicular to the direction of
motion of the impinging blast. The resulting diffracted load on the shell had an
approximately cos’§ distribution of pressure over the exposed side of the shell, with
a peak pressure equal to the reflected pressure of the blast. The pressure on the
leeward side of the shell was approximately equal to the incident pressure of the
blast wave. For the high shock strengths in the tests here, this pressure was small
(as small as one-seventh) ccmpared with the reflected pressure. In the asymmetric
contact charges, the caplosive was arranged to provide a cos ¢ distribution of peak
rressure over one side and no loading on the opposite side.

For symmetric loading with the shock tube, the shell and central shaft were
attached to an ogive nose tip (Figure 3.52b) and the assembly was pointed down
the axis of the shock tube. The rear end of the assembly was attached to a 3-inch-
thick (76 mm) steel plate that was capped over the shock tube. In this way the
maximum loading on the mode! was the reflected pressure traveling back down the
shock tube. Again, the incident pressure coming up the tube was always much
smaller than the reflected pressure. Also, the duration of the incident pressure
loading was very small compared with the total pulse duration. (The time between
incident and reflected shock arrival was very short because the model was very
skort compared with the 6-m length of the shock tube.) The shock that was
reflected back up the tube from the explosive driver end was negligibly small,
because of shock decay through the length of the tube. A small opening around
the reflecting cap at the top of the tube allowed the spent gases to escape.

The explosive charges for both asymmetric and symmetric loading in the
shock tube were flat pancakes of primacord, which gave pressure pulses closely
approximating the exponential shape used in the buckling theory. The cylindrical
charges for imploding symmetric loading were also made of primacord, but strung
out to form a shell coaxially surrounding the shell model. Pulse shape was again
nearly exponential, as was also the shape for asymmetric loading from sphericai
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rharges. Detailed descriptions of these techniques and further shell response
experiments are given in reference 9.

Figure 3.53 gives photographs of six shells buckled from asymmetric and sym-
metric long-duration loads obtained with the shock tube. All the shells have L/a =
2, with a/h = 100, 61, and 24. The asymmetrically loaded shells tend to be buck-
led in the same mode number as under symmetric loading but are buckled only
over the loaded side. The number of buckle lobes in the symmetrically loaded
shells agrees well with the theoretical mode numbers for long duration pulses,
given in Figure 3.49.

Three views arc given of each shell, arranged as in an engineering drawing.
The black line on the asymmetrically loaded shells faced the oncoming blast and
experienced the maximum pressnr= which is the pressure recorded for the test.
The numbers given with each shell are code numbers describing the shell, the peak
pressure and impulse, and a damage code and peak deformation as a percentage of
the radius. For example, the code 6(100)1-9 specifies that the shell is 6 inches
(152 mm) in diameter, has a’h = 100, L/2a = 1, and is the ninth shell of this
type that was tested. Peak loading pressure was P, = 180 psi (1.24 MPa). impulse
was | = 15.7 ktaps (1570 Pa-s), and peak d=formation was w/a = 23%.

Table 3.7 summarizes the results of the long-duration tests and static uniform
radial pressure tests performed with a hydraulic chamber surrounding the lateral
surface of each test shell. Pressures P,, and P, are the asymmetric and symmetric
blast pressures, respectively, that produce buckle deformation in the range from
0+ to 5%. Pressures Poo and Pys are the highest pressures at which tests were
performed and no permanent deformation was observed. Thus, the threshold pres-
sures for deformation are between Py, and P,. for asymmetric loading and
between Pys and P,5 for symmetric loading. Under static loading the recorded
pressure is the average of two or three tests for each shell type. In these tests the
critical pressure is the value at which the hydraulic pressure dropped because of
buckling. There was very little scatter in the static tests. The final column under
symmetric loading gives the theoretical static buckling pressure under static radial
pressure.

The buckling pressures for symmetric loading show that the measured static
pressure is essentially the same as the measnred pressure for long duration shock
loading. This result supports our theoretical procedure of neglecting autoparametric
vibration buckling that arises from oscillations of the hoop mode because of the
step pressure. Also, the theoretical static buckling pressure agrees reasonably well
with both the shnck loading and static buckling pressures.

The buckling pressures under asymmetric loading are generally larger than for
symmetric loading. This result is expected, since with a cos? uistribution in pres-
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Table 3.7

CRITICAL LOADS UNDEKR LONG BURATICI. ..4D STATIC LoAD ™

Asymmetric Symmetric

Static Ratio
L/a a/h Py, Py Pgg Pis  Pgase Theory  Pys/Pyyp

1 100 110 115 40 45 62 46 0.4
1 61 270 280 120 190 190 153 0.1
1 24 650 1100 1300 1500 1500 1630 14
2 61 130 140 90 95 - 79 0.7

* .
Pressure entries are in psi; to convert to kPa, multiply by 6.9.

sure the hoop stress is near the maximum only over about one buckle wavelength.
Hence, the bending resistance from the adjacent region under lower load tends to
inhibit buckling until the overall level of pressure is increased. The exception is
the shell with a’h = 24. In this shell the symmetric buckling pressure is near the
yield pressure. The additional beam bending stresses under lateral loading probably
causes local yielding that triggers buckling at a lower pressure than for symmetric
loading.

Figure 3.54 gives results and photographs for \uasi-impulsive symmetric loads
applied to shells with a/h = 61 and L/a = 2. Loading is increased from one shell
to the next with approximately constant puise duration. First measurable deforma-
tion (1.2%) occurs at P, = 500 psi (3.45 MPa). At P, = 590 psi (4.07 MPa)
buckling is well developed with permanent deformation in two lobes (w/a = 9.5%)
having wavelengths corresponding to N = 8 waves around the complete circumfer-
ence. At P, = 800 psi (5.52 MPa), severe permanent buckles are formed com-
pletely round the shell, again with N = 8. At P, = 1000 psi (6.90 MPa), buckling
is very severe, with N = 13,

The mode numi~r N = 8 is higher than the theoretical threshold number N
= 6 for elastic quasi-impulsive response, given for a’h = 61 in Figure 3.49. This
curve is presented in Figure 3.55b along with the experimental data. The difference
in mode number is attributed to the need for the experimental load to be high
en> gh to cause permanent buckles; no motion picture photographs were taken of
the shells to observe purely elastic buckling. At the actual threshold of buckling,
with pressure near P, = 400 psi (2.76 MPa), the shells probably buckled into N =
6 or 7 but then returned to their undeformed shape. At P, = 230 psi (1.59 MPa)
with a longer pulse duration, permanent buckles were formed with N = 6 complete
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lobes around the circumference (Figure 3.53). An identical shell tested at the same
load buckled into N = §, just as predicted by the theoretical results in Figure 3.49
for long-duration loading.

The increase in mode number to N = 13 at P, = 1000 psi (6.90 MPa) fol-
lows the trend of the theory, but results in hoop stresses beyond the range of the
elastic theory. This load is precisely in the region of the cusp in Figures 3.49 and
3.55b, where neither theoretical model is valid. The sudden jump in mode number
from 8 to 13, which is a value more than twice that of the elastic theory, strongly

-
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suggests that the N = 13 buckling was influenced by plastic fiow in the hoop mode.
However, this value is still much smaller than N = 50 as predicted by the tangent
modulus theory. W¢ corclude that strain rate reversal and complex elastic-plastic
interaction with the end supports also had a strong influence on the buckle motion.
Nevertheless, Figure 3.55 shows that critical loads for buckling are reasonably well
predicted by extending a smooth curve below the cusp to connect the valid regicns
of the tangent modulus and elastic theories.

Figure 3.56 gives load-damage results and photographs of another group of
a’/h = 61, L/a = 2 shells, but tested under asymmetric rather than symmetric
loads. The results and conclusions are similar to those for symmetric loading, but
the critical loads are higher and damage is limited to the loaded side of the shell.
Corresponding peak pressure-impulse dsta are plotted in Figure 3.55a. Inclusion of
the symmetric load buckling theoretical curve shows that the symmetric theory can
be used to obtain rough estimates of critical loads for asymmetric loading.

Figures 3.57 and 3.58 give similar photographs and pressurz-impulse plots for
shells with a/h = 61 and L/a = 4, twice as long as in the previous examples.
Results and comparisons with the theory are analogous to those for the shorter
shells, giving support to the theoretical treatment of the effect of L/a in the preced-
ing sections.
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4. FLOW BUCKLING GF CYLINDRICAL SHELLS
FROM UNIFORM RADIAL IMPULEE

4.1 PLASTIC FLOW BUCKLING WITH HARDENING
AND DIRECTINNAL MOMENTS

In our treatment of plastic flow buckling of cylindrical shells contained in Sec-
tion 3.2 we represent the shell by a ring, and the moment resisting buckling is
assumed to be entirzly due to strain hardening. Here, we take into account the
length of the shell so that axial stresses and strains are brought into the theory. As
we shall see, a consequence of yielding in a plastic biaxial state is the introduction
of what we shall call a ‘directional’ moment contribution to the resistive moment.

The directional moment was first introduced by Goodier! in his work on plas-
tic flow buckling of plates. The theory shows that the relative magnitudes of the
hardening and directional moments depend on the length of the shell, with the har-
dening moment dominating for long shells and the directionai moment dominating
for short shells. This partitioning influences the predicted preferred mode of buck-
ling, thc number of buckles increasing with shell length. The predicted mode
numbers agree with the experimental results presented in Section 4.1.15 for 6061-
T6 sluminum alloy shells of various lengths and radius-to-thickness ratios.

4.1.1 Theory of Plastic Cylindrical Shells

The shell material is assumed to be rigid-plastic, yielding according to the von
Mises conditions and the associated Levy-Mises flow law of incremental plasticity.
The strain hardening behavior is approximated by an isotropic linear relationship.
Figure 4.1 shows the coordinate system and shell dimensions.

With the strain rates in th+ longitudinal, circumferential, and radial directions
denoted by €,,é, and €,, the incompressibility condition is

€, + €+ ¢, =0 4.1.1)
The generalized strain rate € and the generalized stress o are defined by
62 =2l + &3+ eD/3 4.1.2)

and
ol = [(0',l — o)+ (og— 0,)t + (o, — a,)2]/2

=3+ g} + D)2 (4.1.3)

PRSI by
© e
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where o,', oy, and o, are the deviatoric stress components related to the actual
stress components o ,, o4, and o, by

gy=o,+ p ag'g™= gt p g, =og,+ p 4.1.49)
with p = —(o, + o4 + @,)/3. In shell theory, the stress component perpen-
dicular (v thie midsurface is assumed to be negligible, so setting o, = 0 in Equa-
tions (4.1.4) gives

o, = 20, + oy ay = 20’y + o', (4.1.5)

Using the incompressibility condition (4.1.1), we can write the generalized strain
rate fo: mula as

il = Q(el 4+ é6, + €D/3 (4.1.6)
Th= Levy-Mises flow law is

€ /o'y = €p/a'y = &,/a’, = A (4.1.7)

where A is the pioport.onality factor. In terms of generalized stress and strain rate
this factor, b (4.1.2), (4.1.3), and (4.1.7) is

A = 3¢/20 (4.1.8)

Formulas (4.1.7) and (4.1.8) now allow Equations (4.1.5) to be written as stress-
strain rate relationships

oy = 20Q2é, + €)a/3é oy = 202, + é)a/ 3¢ (4.1.9)
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Finally, the - ~~mntion nf linear strain hardening gives
o = E,é o = a9 + Epe (4.1.100

where E), is the slope of the straight line approximating the strain-hardening portion
of the stress-strain curve obtained from a simple tension or compression test, and
oq is the stress at zero plastic strain according to the straight line. The value of o
fixes the initial size of the von Mises yieid cllipse in the o, o4 plane, and the value
of E, governs the isotropic expansion of the ellipse.

4.1.2 Effect of Shell Length on Strain Rates

Short shells with no axial restraint from supports extend axially during the
radially inward motion. The midsurface axial stress is therefore negligible and we
may set o, = 0, which, along with the snell assumption o, = 0, leads to the mid-
surface results: .

op= -0, p=o/3, o, =0, =0c/3, and oy = —20/3.
Hence the flow law (4.1.7) provides the strain-rate relationship
éx o= él - _éolz

Shells with axial restraints from fixed supports have no axial strain, sv €, = 0 and,
by Equations (4.1.9), o, = a,/2.

Long shells, even without axial restraints from supports, have axial stresses
induced by axial inertial forces; for the shell to extend, material has to be displaced
in the axial directions away from the central cross section. For sufficiently long
shells, zero axial strain conditions are established near the central cross section,
whereas at each free end zero axial stress conditions prevail.

An experimental observation on imploded cylindrical sheils is that the genera-
tors remain straight except in a narrow region at each end where the sheli flares
outwards slightlv. Consequently, it is assumed that the axial strain is constant
through the shell thickness; in other words, it is independent of the z coordinate.
Another observation is that, even in a severly buckled sheli, plane sections perpen-
dicular to the shell axis remain plane; thus the axial strain is taken to be indepen-
dent of the @ coordinate.

We assume that the effect of shell length on strain rates can be expressed by
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the midsurface relationship.

&, = —ki(x)e, 0<k<" z=0 4.1.11

AccorJing to Equation (4.1.11), each cross section of a given cylindrical shell has a
value of k that is fixed throughout the motion and represents a measure of the axial
restraint. Here we are concerned only with axial restraint caused by axial inertia.
At the free ends of the shell, x = %+ L/2, we have k(+ L/2) = 0. At the central
cross section, x = 0, the value of k(0) uepends on the shell length but approaches
k(0) = O for very long shells. A formula for k(x) is derived below by analyzing
the unperturbed motion.

4.1.3 The Unperturbed Motion

Shell motion consists of a dominant uniform radial motion with small flexural
motions that increase in amplitude with time. During the entire uniform inward
motion plastic loading occurs. The hoop motion dominates sufficiently to prevent
unloading of any surface element by tlexural motion. Thus the theory is restricted
to describing small flexural motion amplitudes, that is, to threshold buckling.

Let the current inward displacement of a uniform shell caused by a uniform
impulse be wy(t). The circumferential component of strain rate is then

€ = — (1 — 2/a) (Wy/a) (4.1.12)

Experiments show that the shell generators remain straight except for slight
outward {laring near the ends. Consequently, we assume that plane sections per-
pendicular to the axis remain plane; that is, €, is independent of z. This assump-
tion along with Equation (4.1.11) means that the axial strain rate is

€, = ki(x)wp/a (4.1.13)
To simplify expressions to be derived, we let
Ki=20-k+k3) K;=0K,/2* K3=02-%/K, 4.1.14)

We substitute the strain rates (4.1.12) and (4.1.13) into Equation (4.1.6) to give
the generalized strain rate

€ = (2K,/3) (1 — K;z/a) (wo/a) (4.1.15)
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We sihstitute thie strain rates (4.1.12}, (4.1.13), and (4.1.12) into Equations (4.1.9)
and (4.1.10) to give the stresses

o, = - (1 = 2k) ¥k,

+ (z/a) K,{ska°/(2 - WK, + 201 - 2k)5.,w0/3a] (4.1.16)

oy = — Q2 — K a¥/K,

+ (2/a) K3[3k’c°/(2 - WK, + 202 - k)E,,wo/sa] @.1.17)
¢ = oo+ (QEK,/3)( = K,z/a)(wo/a) (4.1.18)
o0 = og + ZEhK2w0/3a 4.1.19)

By comparing Equations (4.1.18) and (4.1.19), we see that o required in Equations
(4.1.16) and (4.1.17) is the current generalized stress at the midsurface.

In the notation of Figure 4.2, the equation of motion of an element of shell
subtending an angle d9 and of unit axial length is

Ny =~ aphwg (4.1.20)

Integration of the circumferential component of stress through the shell thickness,
h, gives

N, = -2 - Ka™/K, 4.1.21)

Hence substitution of Equation (4.1.19) in (4.1.21) end Equation (4.1.21) in
(4.1.20) yields

Wo + 22 — K Eywo/3a = — (2 — K oo/K,ap (4.1.22)

The solution of (4.1.22) with the initial conditions for the impulsive loading

Wo(O) =0 WQ(O) = Vo (4.1.23)
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is
wola = (Vy/hcy)sin(Acyt/a)

— (Goo/2K,E,) [1 - cos()\cht/a)] (4.1.24)

where
Al=202-%/3 cd = Eu/p
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For many practical materials the variable work-hardening term in Equation
(4.1.19) is small compared with oy, the initial value of the generalized stress.
Hence, as an analytical simplification, a constant mean value & is taken instead of
o%. For shelis of interest, buckling impulses produce final generalized strains of
about 5%, 30 o is estimated from the stress-strain curve over this range of strain.
This simplification reduces the equation of motion (4.1.22) to

Wo = —Q — KT/K,ap (4.1.25)
and the solution (4.1.24) becomes
wo/a = 7(2 — 7/71)) (4.1.26)
where
T = Vot/2a (4.1.27)
and
7= pViKy/2Q - KT (4.1.28)

Because solution (4.1.26) approximately describes t~ unperturbed motion and
allows the derivation of an analytical solution of the perturbed motion, we use this
solution instead of Equation (4.1.24). The symbol 7 is the maximum midsurface
circumferential strain to which the shell is driven by the impulsive load: from
Equation (4.1.26), whent = 7, we have wo = 0 and wy/a = 7.

4,1.4 Axial Strain Distribution

We have assumed that the axial and circumferential strain rates are related by
Equation (4.1.11). We now use the unperturbed motion to derive an approximate
formula for k(x). Let uy be the axial displacement during the unperturbed motion.
The equation governing 1notion in the axial direction is

N, = phii (4.1.29)

. where primes denote differentiation with respect to x. The kinematic relations

Uy = €, and €, = —wo/a, when substituted in é, = —keg, give Uy = kwo/a.
Hence, the equations of motion (4.1.20) and (4.1.29) can be combined to give

Ny + (k/a2|N, = 0 4.1.30)
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We now substitute in kguation (4.1.30) the membrane force expressions
N, = (2k = Va’h/K, Ny = -Q — Ka'h/K, (4.1.31)

where o’ is given by Equation (4.1.19), which leads to the equation
k" + [9(1 — 2k QK2 - k)]k" ~ (QL/D)k =0 (4.1.32)

where primes now denote diYerentiation with respect to ¢ = 2x/L. In Equation
(4.1.32) D = 2a is the shell diameter, L is the shell length, and

= (2 - k)K,/[K, - qa- ?.k)’] (4.1.33)

As a simplification, the approximation o°= oy was made in the derivation of Equa-
tion (4.1.32), which assumes again that the variable work-hardening term in Equa-
tion (4.1.19) is small compared with oy. A further simplification is possible if we
observe that for 0 < k < !4 formula (4.1.33) gives 3/4 < Q? < 4/3 and the
coefficient of k'2 lies in the range (0,3/2). If, in addition, k'? is small enough to
allow us to neglect the rniddle term in Equation (4.1.32) the equation for k is

k" - (QL/D)*k = 0 (4.1.34)

The solution of Equation (4.1.34) satisfying k'(0) = O and k (1) = % is
k(x) = cosh (22 x/D) / 2cosh (2 L/D) —L/2<x<L/2 (4.1.35)
where V3/2 < Q < 2/+/3. Values of k(0) from Equation (4.1.35) are compared in

Section 4.1.16 with values obtained from experiments on impulsively loaded shells
of various length-to-diameter ratios.

4.1.5 Perturbed Motion

Because of imperfections, the sheil cross section is not exactly circular, so the
uniform radial motion is perturbed. Let w(0, t) be the additional deflection caused
by imperfections. Then the total deflcction is wo + w. In this theory, w(@, t) is
inextensional and small compared with wq (t).

In the nomenclature of Figure 4.2, the curvature of the deformed shell is

36/ON = k = 1/a + (wy + w)/a? + w'/a? (4.1.36)
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where primes denote partial differentiation with respect to 8. The circumferential
strain rate is then

ép = —( — z/a) (wg + w)/a + (z/a) (W'/a) (4.1.37)

We assume that the axial strain is unaffected by the perturbations and consequently
may continue to be described by Equaticn (4.1.13). During the process of deriving
expressions for the generalized strain and stress and for the components of stress,
we neglect all terms with products of perturbation quantities and, as before, all
terms in z/a of higher order than linear. A further simplification in the analysis is
that the perturbation displacement w(8, t) is small relative to the unperturbed dis-
placement wg (t). This assertion is based on the requirement that strain rate rever-
sal shouid not occur and on our objective of determining threshold buckling
impulses. Thus we continue our formulation with

€p = — (1 — z/a)(wy/a) + (z/a)(W"/a) (4.1.38)
instead of Equation (4.1.37).

Substitution of the strain rates (4.1.13) and (4.1.38) into Equation (4.1.6)
gives the generalized strain rate

¢ = (Ky/3) [ivo/a = Ky(z/a) G + W) /a) 4.1.39)
Temporal integration of Equation {4.1.39) gives the generalized strain
e = QKy/3) [wola = Ky@/ (wo + W' = #") /a] (4.1.40)

where w(6,0) is the initial value of the displacement perturbation. Substitution of
Equation (4.1.40) in (4.1.10) gives the generalized stress

o = ¥ - (2K;K;E,/3) (z/a) (wog + W' — W) /a (4.1.41)
A two-term binomial approxirnation for €' from Equation (4.1.39), strain rates

(4.1.38) and (4.1.13), and the generalized stress Equation {4.1.41) substituted in
the stress formulas (4.1.9) lead to

oy = (1 = 20 oK, + (z/a)K,[3ko°(1 oW W) /(2 — DK,

+2(1 — 2K Ep(wp + W' — v'v")/3a] (4.1.42)
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Oy = -2 - K O‘O/K2 + (z/a)K3!3k20’°(1 + W“/Wo);’ Q - k)Kz

+2(2 — KE,(wp + W' ~ cv")/sa] (4.1.43)

The stress distributions (4.1.42) and (4.1.43) have the following membrane
forces and bending moments:

N, = —h(l — 205/K,

No = —h@ - KF/K, (4.1.44)
M, = 3G + 3 i) / 2 = 0K,
+2(1 = 20E,{wo + w' = &)/ 38K, (n?/120
M, = [3k26(1 + W fig) /(2 = KK,
202~ Ewo + w* — ") /3a[K (/120 (4.1.45)

where we have again replaced the generalized strain at the midsurface with the con-
stant stress o approximating its mean value during the motion. Formulas (4.1.44)
and (4.1.46) for the circumferential membrane force und bending moment are used
in Section 4.1.7 in the derivation of the equation governing the dynamic buckling.

4.1.6 Directional Moments

The circumferential bending moment consists of two parts. As seen in for-
mula (4.1.45), the second term is the hardening moment, which is propcriional to
the hardening modulus E,. The first term ensures that a bending mnoment exists
even with no strain hardening present, providing k # 0 (k = 0 corresponds to
infinitely long shells). This contribution is called the directional moment because
the strain vector at each location z through a shell cross section has a difterent
direction in the strain-rate plane, a state that corresponds to a stress distribution
through the thickness according to the von Mises yield criterion and the associated
ilow rule.

To simplify the discussion of the directional moment, let the hardening

) 'AE“f-'-r SEARS
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modulus be zero. Then, according io (4.1.42) and (4.1.43), the stresses are

+ (2/2) 3k Kool + W' /#g) / 2 = WK, (4.1.46)

ago=—0Q —-Kay/ K,
+ (z2/a) 3k K 30 o(1 + W'/ Wy) / 2 — KK, (4.1.47)
At the midsurface
oJog= (1 -2kK/Q2 - k) (4.1.48)
and, since k lies in the range 0 < k < 12, we have
0<a,/ae<%

for the midsurface values. This stress state is represented by point M which lies on
the thickened portion of the yield ellipse as shown in Figure 4.3. From (4.1.46)
and (4.1.47), the difference between the outer fiber stresses (z = h/2) and the
midsurface stresses are

Ao, = (h/2a)3kKjoo(1 + W'/ wo) /(2 - KK, (4.1.49)

Ac, = kAo, {4.1.50)

which, if w' + wo > 0, means that the outer fiber stress state is represented by
some adjacent point O to the right of M. Similarly, for w' + Wy > 0, the inner
fiber (z = — h/2) stress state is represented by an adjacent point I to the left of M.
If W' + wg < 0, the points I and O lie to the right and ieft of M. The yield ellipse
has the equation

o}— o0+ o} = o (4.1.51)

Differentiation of Equation (4.1.51) with respect to z and substitution of the ratio
(4.1.48) lead to the result of Equation {(4.1.50) for the tangent condition at M.

The associated flow rule provides strain rate vectors that are outward pointing
normals to the yield ellipse. Figure 4.3 shows the vectors at I, M, and O. Each
vector has the same component €, = kwg/a, and by Equation (4.1.38), has the
component
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Ox, é)(

€x = kwg/a
WMA-7304-1

FIGURE 4.3 PLASTIC REGIMES FOR INNER, MIDDLE, AND OUTER
FIBERS FOR NO STRAIN HARDENING

&y = —(Wo/a)ll - @4 + v'v"/Wo)] (4.1.38a)

with the appropriate value of z. At M, &,/ €, = —1/k in agreement with the nor-
mality condition (because doy/ do, = k at M). At the outer fiber where z = h/2,
Equation (4.1.38a) shiows that the magnitude of €, is less than that at the midsur-
face if W' + wy> 0, and since €, remains the same, the point O lies to the right of
M. Similarly, 1 representing the inner fiber, lies to the left of M whenever
W' + wy> C.

The quantity (W' + wg)/a® is the rate of change of curvature, k, so that
k > 0 means that the plastic regimes shown in Figure 4.3 are for sections such as
8, in Figure 4.4 where the buckling is outward relative to the circle of the unper-
turbed motion. The relative compressive stresses at I, M, and O show that the
resulting moment is resistive. Section 6, in Figure 4.4 corresponds to a case of x
< 0.
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MA.7504.2

FIGURE 44 SHELL SEGMENT

4.1.7 Governing Equation
With the aid of the lower part of Figure 4.2, which shows a unit element of
shell with its attendant forces and moments, the following two equilibrium equa-

tions can be derived:

M, 9 _ 08 _ ¥
Q=537 > s " Negx phoswo + W)

The curvature x = 9¢/ 9\ is given by Equation (4.1.36). Eliminating Q and ¢

leads to
(4.1.52)

M, /a2 — No(1 + wo/a + w'/a)/a + phiwg + W) = 0

Using the more accurate version of Equation (4.1.20), specifically
Ng(l + wg/a) = phwg, and substituting formulas (4.1.44) and (4.1.45) for N,
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and M,, we find that (4.1.52) becomes

phw + ho(2 — K(w"/a) /Ka + Ks[3k’6(~'v"/\'vo)/(2 - kK,

+2Q2 —~ WE, W' — W) /3al"(h3/12a3) -0 (4.1.53)
Introducing the dimensionless variables
u=w/a, i=w/a, ug=w,/a , and £€=1-—17/7¢ (4.1.54)

where 7 and 7, are defined by (4.1.27) and (4.1.28), and integrating Equation
(4.1.25) to obtain wy = V¢ enables Equation (4.1.53) to be written in the form

i+ 2rpu" - a2[3k2K3(1'1"/§)/(2 - k?

~202 - KB — "')/K2]" =0 (4.1.55)

where

a? = h?/12a? B = E, /& (4.1.56)

and now the dots denote differentiation with respect to £.

4.1.8 Modal Solution

General displacement perturbations are represented by the sum of a Fourier
series in sinn@ or cosnf, but because the differential equation governing the time
variation of the coefficients u, (&) for the cosine series is the same as that for the
sine series, we consider only the displacement perturbation

u(@,€) = Y u,() sinng (4.1.57)
1
having as initial displacement perturbations

i(8,1) = Ya, sin 6 (4.1.58)
1

When we substitute Equations (4.1.57) and (4.1.58) in the governing Equa-
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tion (4.1.55) we obtain for cach amplitude u, the differential squation
Uy — Quun/ € — R, = S,a, (4.1.59)

where
Q, = 3a%k¥X;n*/ Q2 - Kk)? (4.1.60)
RZ = 2rnfll = @2 = Kan?/Ky| @4.1.61)
Sn = 21’;‘(2 - k)azﬁn‘/Kz (4.1.62)
The representation
V = Vi1 + I b, sinnd) (4.1.63)
1

for initial velocity imperfections and Equation (4.1.58) for initial displacement
imperfections means that the coefficients u,(¢) in Equation (4.1.58) must satisfy
the initiai conditions
u, (1) = a, U (1) = —27b, (4.1.64)
Whenever R2 > 0, the solution of Equation (4.1.38) satisfying initial condi-
tions (4.1.64) is ‘
u, (&) = A (&a, + B, (&b, (4.1.65)

where A, and B, are the amplification functions

A, () = zfrgvll,(nng)x,_,(k,,) + K, (R &)1, _ ‘(Rn)]nz/Rn—- S./R2 (4.1.66)

B,(¢) = 2ng~[ - LR,EK(R,) + x”(nngn,(nn)] (4.1.67)

in which
v = (1 + Q,)/2 (4.1.68)

In Equations (4.1.66) and (4.1.67), I, and K, are modified Bessel functions? of the
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first and second kinds of order ». For the case R2 < 0, expressions similar to
(4.1.66) and (4.1.67) arise, but involving J, and Y, which are Bessel functions of
the first and second kinds of order »; the solution is therefore of a damped oscilla-
tory nature with £*J, and €'Y, approaching zero as ¢ spproaches zero (i.e., as
motion terminates). Thus the growth of modes is possibie only when R2 > 0 or,
from Equation (4.1.61), when n?< K,/ (2 — kK)a?8. This transi‘ion is analogous
to that occurring in very long shells (k = 0), in which only strain-hardening
moments are present, where hyperbolic and trigonometric functions occur instead
of modified Bessel and Bessel functions.

4.1.9 Amplification Functions

We illustrate the nature of amplification functions A, and B, by means of an
example that corresponds to one of the experiments described in Section 4.1.16 on
6061-T6 aluminum alloy shells. The data for this exampie are given below

shell radius a = 3.734 cm (1.47 inch)
shell thickness h = 0.165 cm (0.065 inch)
shell length L = 10.160 cm (4.0 inch)
flow stress (average) o = 290 MPa (42,000 psi)
hardening modulus E, = 2275 MPa (330,000 psi)
density p = 2.7 g/cm’ (0.097 Ib/in?)
impulse I = 640 N-s/m? (0.095 psi-s)

According to Equation (4.1.35) with the choice © = /3/2, the value of k at x ==
0 is k = 0.28. Figures 4.5 and 4.6 show the amplification functions A ,(£) and
B, (&) from formulas (4.1.66) and (4.1.67) for n between 1 and 26 that give R} >
0 and at time intervals corresponding to £ = 0.2. The curves show that the
amplification spectra develop a strong prefererce for a narrow band of harmonics.
It is reasonable to select the most amplified harmonic to represent the predicted
mode of buckling. The variation of the preferred harmonic with € is shown by the
dashed line through the peaks. After ¢ = 04 (r = 0.61(), the preferred mode
does not change appreciably. At ¢ = 0(r+ = ), the preferred mode numbers
stemming {rom initial displacement and velocity perturbations are 16 and 14. The
amplification curves for the other sheils in the experiments exhibit the same
characteristics as those in Figure 4.5.
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4.1.10 Asymptotic Solutions for Terminal Motion

We can derive simple formulas that approximate the amplification functions at
the end of the motion, that is, when £ = 0. It may be shown that

Lt&'I,(Rpé) = 0

Lt&’K, (R ¢) = 2°"'T(W)/R}
E—~0

§—0

where T'(v) is the gamma function; from (4.1.60) and (4.1.68), v > 2. Let n be
the value of n above which no amplification occurs so that R; = 0. Then

Al = K,/Q2 - Ka?B

(4.1.69)
and

S/RZ = |t - wn
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In general, mode numbers in the vicinity of the most amplified mode lie well below

fi. In fact, n= 7/ V2 is : reasonable estimate. Cunsequently, the term S,/R 2 does

not contribute substantially to the amplification function A, (0). Formulas (4.1.66)
and (4.1.67) thus reduce to

A, G} = 2%r T, (R)n¥Y/R2H! 4.1.70)

B,(0) = 2*7. TG, (R,)/R} 4.1.71)

Further simplification is possible for many practical cases in which
8R, > 4y? — 1, allowing us to use the asymptotic form

1,(R,,)=e"“[1 - (42 - l)/8R,,]/(21rR,,)”2
in (4.1.70) and (4.1.71) to give

A,0) xzvr,r(p)e“"nz[l - (4 - 1)2- !)/8Rn]/(21r) VIR v+3/2 (4.1.72)

B,,(O)‘—:z"nl‘(u)ek"[l ~ (4?— l)/8R,,]/(21r) VIR v+ 12 (4.1.73)

We can see whether we are allowed to use the result 8R, > 4»? — 1 by estimating
the values of n near the peak of the amplification curves by n = 7/ V2, where @ is
the cutoff value determined by (4.1.69). In the example of Seciion 4.1.9, the cutoff
mode number is n = 27 and the estimated number of the most amplified mode is
N=175+v2 =19 Thus Qn = 1.74, » = 137, and Ry = 5.51, giving
8R, > 4l -1,

4.1.11 Strain Hardening Moments Only

A simple special case is the very long shell for which k= 0 and the directional
moments are negligible. For this case, (4.1.60), (4.1.61), and (4.1.62) are

Q, =0 R2 = 2rn¥1 - 2a%Bn?/V3) S, = 47;a?Bn*/V3

The solution of Equation (4.1.59) with Q, = O that satisfies initial conditions
(4.1.64) gives the amplification functions

A, (&) = Q27mn?*RD cosh R, (1 — & — S,/R? (4.1.79)

B,(¢) = (27(/R,) sinh R (1 — §) 4.1.75)
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which, at the end of motion (¢ = 0), are approximately

A,(0) = re"mi/R? (4.1.76)

B, (0) = re""/R, (4.1.77)

Formulas (4.1.76) and (4.1.77) are also obtained if we set v = ', corresponding
to Q, = 0, in formulas (4.1.72) and (4.1.73). Regarding A,(0) as a continuous
function of the variable n, so that we can differentiate with respect to n, and equat-
ing the first derivative to zero yield the preferred mode number

1/2
N = fi/V] = [»J3‘/4a25l (4.1.78)
and the preferred mode amplification
An(0) = ™™ R = 7N = 3 r/dalg (4.1.79)

In (4.1.78), n is again the cutoff mode. Treating the other amplification function
(4.1.77) in the same manner leads to the same preferred mode (4.1.78) with the
amplification

By(0) = r.e"N/Ry R = +N2 = 3 r/4al8  (4.1.80)
When k = 0, Equation (4.1.28) for 7, the final circumferentia! strain, becomes
e = 3 pVi/4T = 3 1}/4ph% (4.1.8D)

where I = phV, is the applied impulse. Thus (4.1.79) and (4.1.81) provide the
relationship between the impulse and the preferred mode amplification

I = /pE, (2h?/3a)tnA, (4.1.82)

An implicit expression is found for I if B, is used. Formula (4.1.82) is useful for
determining the threshold impulse.

In the example of Section 4.1.9 with k == 0, the preferred mode number is N
= 18, the displacement amplification is A, = 228, and the impulse is | = 6500
dyne-s/cm? (650 N-s/m?) .
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4.1.12 Directional Moments Only

The special case of negligible strain hardening is obtained by assuming that 8
is small enough to give S;=~0 and R2=2r?% Q, remains the same as (4.1.60).
Note that R ? is always positive, so all modes are amplified. However, if n is large
enough to make 4v > R2, then A ,(0) in (4.1,70) reduces to

(R,/2)? (R /D¢
A0 =1 + » + 36 D) + ... (4.1.83)

which shows that substantial amplification is possible only for mode numbers satis-
fying 4v < R?, that is, for

n?< (2 - KK,r¢/3k%? (4.1.84)

If k is a small number corresponding to a long shelil, inequality (4.1.84) implies that
all modes are capable of being amplified substantially, let k—0 in (4.1.84)
(K,=—2). If k is small, the restoring directional moment is small and the buckling
is highly unstable. If k=1, corresponding to a short shell, inequality (4.1.84)
becomes

n2< 3r/a’ (4.1.85)

For the example in Section 4.1.9, inequality (4.1.85) gives amplification o1 modes
with n < 40. With strain-hardening moments only, (4.1.78) gives the cutoff mode
number n = 26.

The amplification functions are again (4.1.70) and (4.1.71), which for cases
with 8R, > 42 — 1, become (4.1.72) and (4.1.73). With R? = 27(n?
differentiation of (4.1.72) with respect to n shows that the maximum value of
A ,(0) occurs wher n is a solution of

R,—2Q.n(R,/2) ~ Q,/2 +2Q,¥ — Q,(7TQ,— 6)/8R, =0 (4.1.86)

where ¢ = () is the Psi or Digamma function.? Similarly the maximum valuc
of B,(0) occurs when n is a solution of

Rp— 2Q,20(Ro/2) ~ Qu/2~1+ 2Qu% — Q,(7Q, + 6)/8R, =0  (4.1.87)

The preferred modes determined by (4.1.86) and (4.1.87) can have substantial
amplification when 2(Q, + 1) <R} and 2(Q, + 3) <R} respectively. Also,
(4.1.86) and (4.1.87) are valid approximate equations for the preferred modes when
Q,(Q, — 2) <8R, and Q,(Q, + 2) <8R, respectively; otherwise, n must be
found to maximize A ,(0) and B, (0) in the forms (4.1.70) and (4.1.71).
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Figure 4.7 shows the two curves for the real values of Q, and R, that satisfy
(4.1.86) and (4.1.87). For numerical convenience, these curves may be approxi-
mated by the straight lines

2Q, = 2R,./3 + 1 (4.1.88)

16Q, = SR, — 1) (4.1.89)

These equations are of the form

4

n* —amn + ag =0 a, >0 (4.1.90)

where the constants ag and a, are readily determined from: (4.1.60) and (4.1.61),
with 8 = 0, for Q, and R,,.

From Eq. (4.1.86)

R2=2(Q, +1)
8R, = (Q, +2)Q,
8R, = (Q, - 21Q,

From Eq. (4.1.87)

0 IS S S B I

MA-7504-5A

FIGURE 4.7 Q vsR_ FOR PREFERRED MODE NUMBER
(No Strain Harderiing)
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An adequate and simpler approximation for the preferred mode number is

obtained by letting the straight lines pass through the origin. Then, instead of
(4.1.88) and (4.1.89) we have

Q. = 5R,/14 Q, = 5R,/1' (4.1.91)

or

N3 = ¢/27; 2 - KK,/3k%? (4.1.92)

where
¢ = 5/14 for displacement imperfections
¢ = 5/17 for velocity imperfections.

In the example of Section 4.1.9, formula (4.1.92) predicts preferred mode numbers
of N = 22 and 21 for amplification of displacement and velocity imperfections. For
N =122 wehave Q. =33 and R, = 9.2.

The above approximations for obtaining the explicit formula (4.1.92) for the
preferred mode allow us to derive an explicit relationship between the applied
impulse and the amplification of the preferred mode stemming from initial lack of
circularity. The procedure outlined below for obtaining this explicit relationship
leads to an implicit relationship between the impulse and the amplification of the
preferred mode stemming from initial velocity imperfections.

In (4.1.72) we shall first neglect the term [4(v — 1)2 — 2]/8R,. Then, since
R} = 2r;n?, formula (4.1.72) becomes

A0 = 2~ 'TG)etyQm Rz 12 (4.1.93)
With » > ', an approximation adequate for our derivation is
) =e %~ 22m)2 (4.1.94)
which reduces (4.1.93) to

Ve A, (0) = eM(u/eR )12 (4.1.95)

After taking the logarithm of (4.1.95) and substituting the relationship Q, = CR,
from (4.1.91) with ¢ = 5/14, we obtain

inxffe A,,l = Rn[I - (¢/2)¢n {eQn/c(Qn + 1) (4.1.96)

o
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We now make use of the observation that th2 second term: in the square brackets in
(4.1.96) is a slowly varying functicn of Q,. As Q, increases from 1 to oo, this
function increases from 0.24 to 0.36. A reasonabie value is 0.3, correspornding to
value of Q, = 2.5, which is in a practical range of Q, values. This approximation
reduces (4.1.96) to

Qn[J'z'e A,,] - R, co = 0.7 (4.1.97)

For the preferred mode, R2 = 27;N?, where N is given by (4.1.92). The dimen-
sionless duration of motion or final hoop strain 7 is related to the initial uniform
velocity Vo and hence the impulse by (4.1.28). Consequently, (4.1.97) may be
manipulated inio the form

I = ‘k’K;Mc&ch}l/‘\/;)_E_ a(h./a)m[fzn[\/fé A,,]]m (4.1.98)

In the example of Section 4.1.9, formula (4.1.97) predicts an amplification of
A, = 270 and forraula (4.1.98) predicts an impulse of I = 6320 dyne-s/cm? (632
N-s/m?).

4.1.13 Directional and Hardening Moments

In the general case that includes directional and hardening moments, we tmust
retain the general forms (4.1.60), (4.1.61), and (4.1.62) for the coefficients Q,,
R,, and S, in the governing differential Equation (4.1.59), We recall that mode
growth is possible only if R2 > 0, that is, if n < n where 1 is a cutoff mode
number given by (4.1.69). In this section we continue our discussion of the func-
tion (4.1.79) that amplifies the initial displacement imperfections. This function
reduces to the series (4.1.83) if n is large enough to make
RI< 4y = 2(Q, + 1), so substantial amplification occurs only if
R2 > 2(Q, + 1). The amplification function may be approximated by (4.1.72) if
8R,>4(v - D2 -1 = (Q, — 2)Q,.

If we substitute expressions (4.1.50) ancd (4.1.61) for Q, and R, in the ine-
quality R2> 2(Q, + '), we obtain an upper Sound that is below n for the
numbers of the modes that are amplified. This substitution gives

n?< @’ = 6%/(2q + 1) (4.1.99)

whure
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The value of n that maximizes A, (0) given by (4.1.72) is the solution of

R, —2Q,n(R,/2) - Q,/2 +2Q ¢

= Qn(7Q, - 6)/8R, = (R, — Q,/2 ~ 2)Q,/qR? (4.1.101)

where q is defined by (4.1.100) and ¢ = ¢(v) is again the Psi function.? When
hardening is negligiblie, Equation (4.1.101) is the same as Equaticn (4.1.87). Fig-
ure 4.8 s.0ws solution curves that relate Q, and R, for several valucs of the param-
eter q. These curves may be approximated by straight lines through the origin so
that

Q, = C(@R, (4.1.102)

The function C(q) is satisfactorily represented by

C(g) = c[l - c,e“"“") (4.1.102)

where ¢ = 0.36, ¢, = 0.85, qo = 0.10, and 0.01 < q.

5 T TT 1 T T i T 1 | A R B |
RZ = 2(Q,+1)
4 — —
3 8R, = (Q,-2)Q, .
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MA-7504-8A

FIGURE 48 Q vs R, FOR PREFERRED MODE NUMBER
(No Strain Hardening Moment: q = cs; No Directisn Moment: q = Q)
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If we substitute expressions (4.1.60) and (4.1.61) for Q, and R, in (4.1.102)
we obtain for the preferred mode number the formula

W3 = C(Q2rr 2 — KK f l@l/skw 001 < q (£1.104)
n

1/2
f [—’f—l -y - ] (4.1.105)
n l

and C(q) is determined by (4.1.103), q being the parameter in (4.1.100). Negligi-
ble strain hardening (8 = 0) corresponds to large values of q for which C(q) = ¢
and N/n = 0. In these cases, (4.1.105) reduces to (4.1.92). Negligible directional
moments (k = 0) corresponds to small values of q for which C(q) = ¢(1 — ¢,).
In these cases, (4.1.105) does not reduce to the predictive formula (4.1.78). How-
ever, if curves of the type shown in Figure 4.8 are approximated by parabolas
whenever q < 0.01, that is, if

where

N
f

Q, = L(qQR? + d(q) q < 0.01 (4.1.106)

Eyuation (4.1.78) can be obtained in the limit as q — 0. Suitable functions that
allow a fit of the curves in Figure 4.8 and ensure the correct limiting prediction of
Nasq— 0 are

D(g) = q(1 — 44q) d{qQ) = q%1.08 — 80q)10* 4.1.107M

If we substitute expressicns (4.1.60) and (4.1.61) for Q, and R, in Equation
(4.1.106), we obtain a quadratic equation for N2 the solution of which may be
expressed in the form

M/n)?= [1 + {1 + 2d(q/D + 1)/7n2D}V3/2(q/D + 1) q < 0.01(4.1.108)

Formulas (4.1.107) ensure that (N/f)2— 2 as q — 0, in agreement with (4.1.78)
for the case of vanishing directional moments. The factor in (4.1.108) that strongly
influences N is ni, which according to its definition (4.1.69), is primarily a function
of B. Thus the preferred mode number is determined by the hardening parameter
B whenever ¢ < 0.01. In the upper part of the range of q, the slopes C(q) from
Figure 4.8 and from the approximating function (4.1.103) are within 20% of the
asymptotic value of ¢ = 0,36 at ¢ = oo whenever q > 0.2. Inspection of (4.1.104)
shows that whenever q > 0.2, the preferred mode number is weakly dependent on
B through the function (4.1.105) and hence N is predominantly influenced by the
directiona! moments. In the range 0.01 < q < 0.2, the major influence on N
changes from hardening to directional as q increases.
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Figure 4.9 shows how the preferred mode number depends on the hardening
and directional parameters 8 and k for the shell of Section 4.1.9 with a/h = 22.6
and 7¢ = 0.05. The full lines were obtained from (4.1.104) for 0.01 < q, and the
dashed lines were obtained from (4.1.108) for ¢ < 0.01. The main feature is that
the mode number decreases as B8 or k increases, demonstrating the increase of
wavelength with resistive moment. For very short shells having 0.4 < k € 0.5,
directional moments predominate. Even for very long shells having 0 < k € 0.1,
directional moments have a strong influence if 8 is small enough (say 8 < § in
Figure 4.9).
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FIGURE 4.9 INFLUENCE OF DIRECTIONAL AND HARDENING
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We now use (4.1.104) and (4.1.108) to obtain formulas relating the final
amplification factor of the preferred mode to the applied impulse. In (4.1.72), we
neglect the term [4(v — 1) — 1]/8R, and make use of the approximation (4.1.94)
to give

Vie A, (0) = (1 + S /RDeMQu/er,)" 12 (4.1.109)

Formula (4.1.109) reduces to (4.1.95) when 8 = 0. If we introduce (4.1.102) for
0.01 < q and (4.1.106) for 0 < q < 0.01, (4.1.109) becomes

en(v2e A,) = Cy(@R, + en(1 + S,/R2) (4.1.110)
where
C
lZ]QnCR o 0.01 < q
Col@) = D 2 4 a), R, 4.1.111)
3 q < 0.01
DR + 4 + 1

When 001 < q, C,(q does not depend strongly on R,. When q < 0.01,
Co{q@) = 1. In fact, Cy(q) can be represented adequately by

"Q/%
cg + (1 = ¢ple 001 <q ¢;=071 ¢~ 006
Co(q) - 1 0 < q <001 (4.1.112)

Again, the term in (4.1.110) that includes S, does not contribute substantially to
the amplification. The term is retained only for 0 < q < 0.01 but replaced by

env2e.

Formulas (4.1.102) and (4.1.103) relating Q, and R, for 0.01 < q, formulas
(4.1.106) and (4.1.107) reiating Q, and R, for q < 0.01, formulas (4.1.104) and
(4.1.108) for the preferred mode number, and (4.1.28) relating the final strain 7 to
the immige are all used in (4.1.110) to derive the expressions

/4
kK N) — [n)"? v
WK ‘l‘:l‘/;‘[?l Jenvae 4, 00l<q  (4.1113)
J =
l”iKz] [ ]\/_Enal lQnA a<001 (4.1.114)

B
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where

[ ] - -3

The impulse formula (4.1.114) approaches (4.1.82) for vanishing directional
moments, as k (and hence q) approaches zero.

2)-1/2
] (4.1.115)

v‘igure 4.10 shows the variation with k and B of the coefficient in the
impulse-amplification formula (4.1.113); for a given shell, Figure 4.10 therefore
shews how the impulse-amplification relationship depends on directional and har-
dening moments, represented by parameters k and 8. For k > 0.2 (shell length
fess than two diameters), the impulse is not sensitive to strain hardening; the
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FIGURE 4.10 INFLUENCE OF DIRECTIONAL AND HARDENING
MOMENTS ON THRESHOLD IMPULSE
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coefficient increases from about 0.45 and 0.70 as k increases from 0.2 to 0.5. Thus,
for a specified amplification A,, an increase in k from 0.2 to 0.5 increases the
impulse required to produce this amplification by about 50%.

We have seen how hardening and directional moments influence the predicted
preferred mode number and the impulse-amplification relationship. For the
remainder of this section, we examine the moment components themselves.

From formula (4.1.45) the directional and harder:ing moments are

Mo = [K%o/Q — OK|F0120) (1 + " fivg) (4.1.116)

M, = [2(2 - k)x3/3]13,;(h3/12a’)(w0+ W —#") 4.1.117)

In terms of the dimensionless quantities introduced in Section 4.1.7, Equations
(4.1.116) and (4.1.117) are

M, = —[3k21(3/2(2 - KKJ|@haa?/r) " /8) 4.1.118)

M, = [2(2 - k)K3/3](6haazﬁ)(u — @) (4.1.119)

Substitution in Equations (4.1.118) and (4.1.119) of the Fourier representations

o0 o0

My = 2 M V(¢)sinng M, = Y M{"(£)sinne (4.1.120)
1 1

along with the similar representations of (4.1.57) and (4.1.58) for the curreat and
initial displacement perturbations provides the coefficients

M{M(E) = [3;81(3/2(2 ~ WKy|Ghaa/ronta /e (4.1121)

M (E) = —[2(2 - k)K3/3](5haa23)n2(un ~a)  (41122)
Displacement imperfections alone lead to
iy = Ag()a, un = ap = [A0® = 1]a,

where the amplification function is determined by (4.1.66). A measure of the rela-
tive magnitude of the directional and hardening moments may be obtained by the
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ratio

(n) -
AW - Mg —a f, Andese (4.1.123)
TVM‘“’df T(A ~ 1) d¢

where q is given by (4.1.100). Substitution of A, from (4.1.66) into (4.1.123) and
integration lead to

AN = (qR,f/Q..)/[l — R/ VP (p +'/z)L,_,(Rn)] (4.1.124)

where L, is the modified Struve function? of order ». If we treat the amplification
functions for the initial velocity perturbations in the same way, we can derive

AfD = (QR:%/Qn)/[] + RY2r Vo + ‘/I)L,,(Rn)] (4.1.125)

As an illustration of the magnitude of the ratio (4.1.124) let us take the prac-
tical value Q, = 2, which gives v = 3/2. If n is the preferred mode number,
Q, = C(qQ)R, where C(q) is determined by (4.1.103) for 001 < q. When v =
3/2, the ratio (4.1.124) becomes

A = @rR2/Q,) [1 — R2/2(cosh R, — 1)] (4.1.126)

The smaliest value of A, is achieved by the smallest permissible value of R, which
in turn is obtained by the maximum permissible C(q). Now, by (4.1.103),
max.C(q) = 0.36 whenever q > 0.3 and, since Q, = 2, we have R, = 5.6. With
these values of q, Q,., and R,, we obtain A ™ = 5.3 for the ratio of directional to
hardening moments according to our definition (4.1.123). Again for Q, = 2 but
with q reduced to g = 0.1 we obtain a smaller ratio A ™ = 2.5. Fixing Q, fixes k,
so reducing q, given by (4.1.100), means increasing the hardening by increasing 8,
which accounts for a reduced moment ratio.

4.1.14 Displactment and Velocity Impeifections

The final shell buckling deformation w(#, 0) stems from the growth of initial
displacement of velocity imperfections. We would like to compare these initial
imperfections when they give rise to equal contributions to the final shape. We
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simplify the procedure for obtaining this comparison if we visualize the final shape
as consisting only of the preferred mode

0(9,0) - (ANaN + Bnbn)Sin No (4.1.127)

The amplification: functions Ay and By are given by (4.1.70) and (4.1.71). Thus
the amplitude of mode (4.1.127) is

max u(6,0) = Z"TfF(u)[l,_l(RN)NzaN + l,(RN)RanI/Rﬁ“ (4.1.128)

For equal contributions to this amplitude stemming from the growth of initial dis-
placement and velocity imperfections, the imperfection ratio has to be

bn/an = NI,_;(Ry) /RNIL(Rp) (4.1.129)

Many practical cases have 8Ry > 4v? — 1 so that I,_, = I,, which allows the
ratio (4.1.129) to be estimated by

1/2
bn/an = NZ/Ry = N/(Q2r1)) "2[1 - (N/ﬁ)’i (4.1.130)

Because the preferred mode number N is less than the cutoff mode number n, we
have

bn/ay > N/(Q27()"2 (4.1.131)

In the example of Section 4.1.9, the preferred mode number snd the final unper-
turbed hoop strain are N = 19 and 7, = 0.0865, so (4.1.131) gives by/ay > 46.
This result indicates that for equal contributions to the final amplitude the velocity
imperfection has to be a much larger percentage of the initial uniform velocity than
the displacement imperfection is of the initial uniform shell radius.

4.1.15 Threshold Impulse

In Section 4.1.1}, we derived Equations (4.1.113) and (4.1.114) for the
impulse-amplification relationships. If the directional moment is negligible, the
impulse formula is (4.1.82), and if the strain hardening moment is negligible, the
impulse formula is (4.1.98). Figure 4.11 shows the impulse-amplification curves
constructed from formulas (4.1.113) and (4.1.114) for shell 1, chosen from the
experimental shells of Section 4.1.16. Each curve is associated with a fixed shell
length and hence a fixed value of k. The curves show the exponential rise of the
amplification with increasing impulse and, for a fixed amplification, the increase of
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impulse with decreasing shell length. The discontinuity in the curve L = 8 is
caused by mismatch of the two approximate predictive formulas (4.1.113) and

(4.1.114).
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FIGURE 4.11 IMPULSE-AMPLIFICATION CURVES
{Shell 1 in Table 4.1)

A reasonable and simple choice of a criterion for the threshold impulse is to
take as the amplification the value Ay = 100. For this value, quantities required in
the impulse formulas are

3/4
[en(m AN)] = 3.57 fnAy = 4.61

For long shells with k = 0 the threshold impulse, from (4.1.82), is
I, = 3.07/pE, a(h/a)? (4.1.132)

For short shells with k = 0.5 and a strain-hardening value such that q > 0.5, the
threshold impulse, from (4.1.98), is

I, = 2.46Vp5 a(h/a)¥? (4.1.133)
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If we consider again shell 1 with lengths L = 12 inches (30.5 cm) and L = 1 inch
(2.54 ¢cm) (k = 0 and k = 0.5), formulas (4.1.132) and (4.1.133) give threshold
impuises of 5600 and 7600 dyne-s/cm? (560 and 760 N-s/cm?).

4.1.16 Comparison of Theory and Experiment

Table 4.1 contains the main experimental data. Each shell was impulsively
loaded with sheet explosive as described in Section 3.2.7. Profiles were taken at
Yr-inch intervals along the shells, and the number of waves at each section was
recorded. The mode numbers were highly reproducible and the averages are listed
in the last column.

The experimental values of k were determined from the final strains €, and
€y. The axial strains ¢, were found by scribing fine grid lines, approximately 1-cm
apart, along an outer generator. The distances between the grid lines were meas-
ured before and after loading by a traveling microscope accurate to one thousandth
of a millimeter. In each shell the strain distribution was regular except for
increases in the flared regions at the ends.

The circumferential strain was found by the following two methods. For the
short shells in which no flaring occurred, the end profiles of the outer and inner
surfaces were reproduced directly by standing the shells on a flat surface and tracing
around the contact circles. A circle representing an average of the outer and inner
traces was constructed to determine €, at the midsurface. For the larger shells, in
which flaring was noticeable at the ends, the outer circumference at several posi-
tions along the shell was found by measuring the length of a strip required to pass
around the shell. The midsurface strain was then found by adjustment for the shell
thickness. Again, the strain distribution was regular except for a slighy decrease
near the flared ends. An interesting observation was the slight decrease in mode
number near the ends of the shells corresponding to the local increase in k because
of the adjacent free ends.

The values of the final strain ratio and the mode number given in Table 4.1
are those prevailing over the uniform region away from the ends. These values of
k are plotted in Figure 4.12. Also shown for comparison is the theoretical strain
ratio derived in Section 4.1.4; this function of the length-to-diameter ratio L/D is
formula (4.1.35) with x = 0 and, for the best fit, with the parameter & = /3/2.
The experimental and theoretical k-values are in agreement.




Table 4.1

EXPERIMENTAL DATA FOR CYLINDRICAL SHELLS

Number Radius
Sheil of a

Number  Shells {cm)
3
3

1 2 3.729
1
1
3

2 3 1,706
2
k)
3

3 2 3.691
1

Sheil data: 6061-T6 aluminum.
E, = 2275 MPa (330,000 psi),
p = 2.7 g/cm’ (0.097 1b/in?).

OF 6061-T6 ALUMINUM

Length
L

(cm)

Thickness
h

fcm)

2.54
5.08
10.16
2032
30.48

2.54
5.08
10.16

2.54
5.08
10.16
30.48

0.165 226

0.211

17.6

0.241 15.3

5 = 290 MPa (42,000 psi),

Table 4.1 (concluded)

Impuise
{
(N-s/m?)

650
650
650
630
630

660
660
660

690
690
690
690

Strain
€p
(%)

EXPERIMENTAL DATA FOR CYLINDRICAL SHELLS

OF 6061-T6 ALUMINUM

Number Radius  Thickness Length
Shell of a h L
Number  Shelis  (inch) (inch) a/h  (inch)

3 1

3 2

! 2 1.468 0.065 22.6 4

1 8

i 12

3 1

2 3 1.459 0.083 116 2

1 4

3 1

k! 2

3 2 1.453 0.095 153 4

3 12

Shell data: 6061-T6 aluminum.

Ey, ™ 2275 MPa (330,000 psi), & = 290 MPa (42,000 psi),

p « 27 glcm? (0.097 ib/in?).

Impuise
4

(dyne-s/cm?)

6500
6500
6500
6300
6300

6600
6600
6600

6500
6900
6900
6900

Strain
€

(%)

9.4
9.4
9.4
9.4
9.4

4.8
43
48

5.3
5.3
5.3
5.2

0.43
0.37
0.26
0.10
D.04

0.48
0.38
0.31
0.45
0.45
o
0.06

K=
€X

0.43
0.37
0.26
0.10
0.04

0.48
0.38
0.31

0.45
0.45
0.31
0.06

231
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FIGURE 4.12 COMPARISON OF THEORETICAL AND EXPERIMENTAL
DIRECTIONAL PARAMETERS

The mode numbers were obtained from profiles such as the two samples
shown in Figure 4.13 for shell 1 of Table 4.1. As shown, the samples are for shell
lengths of L = 2 inches and L = 12 inches. The average count from all profiles at
Y2-inch spacing, and from repeat tests in the case of the 2-inch-long shells, resulted
in preferred mode numbers of N = 15 and N = 20, respectively. The experimen-
tal mode numbers for all the shells are listed in Table 4.1 and, for comparison with
predictions, in Table 4.2.

The mode numbers were predicted in three ways. In the first way, each
number in the column headed by A,(0) is the mode number at the peak of the
amplification curve at the end of motion (¢ = 0, 7 = ;), the growth of the
mode amplitude stemming from initial displacement imperfections. The preferred
mode number is therefore the value of N that maximizes A,(0) given by formnla
(4.1.70). An example of the curve A ,(0) versus n is shown in Figure 4.5. In the
second way, each number in the column headed by B, (0) is similacly determined,
the growth now stemming from initial velocity imperfections. An example of the
curve B,(0) versus n obtained from formula (4.1.71) is shown in Figure 4.6. In
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SHELL PROFILES
L=2in,n=15

:]'73 L=12in,n=19
&
Lt e o
~-180 -90 0 +90 +180
6061-T6 Aluminum a = 147 in,, h = 656 mils, a/h = 22,6

MA-7504-11A

FIGURE 4.13 PROFILES OF SHORT AND LONG SHELLS
{Shell 1 of Table 4.1)

Table 4.2

THEORETICAL AND EXPERIMENTAL MODE NUMBERS
FOR CYLINDRICAL SHELLS OF 6061-T6 ALUMINUM

Preferred Mode Number N

Shell Impulse St_rrxtm Experiment

Number (N-s/m?*) (%) k(0 A,(0) B,(0) Formulas N
9.5 0.48 13 11 13 15

9.2 0.42 14 12 14 15

1 6400 8.6 0.28 16 14 16 16
8.4 0.09 20 18 22 19

8.3 0.03 20 18 15 20

6.2 0.48 11 8 11 14

2 6600 6.0 0.42 12 9 12 15
5.6 0.28 14 11 14 15

5.2 0.48 10 7 10 11

3 6900 5.0 0.42 11 7 10 12
4.7 0.28 13 9 12 12

4.5 0.03 16 12 15 16

* Average impulse.
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the third way, the column headed "Formulas" refers to prediction of N by (4.1,104)
or (4.1.108). The comparison of the predicted and experimental mode numbers in
Table 4.2 shows general agreement.

4.2 VISCOPLASTIC FLOW BUCKLING
WITH BDIRECTIONAL MOMENTS

Figure 4.14 demonstrates that cylindrical shells made of strain-rate sensitive
material such as fully annealed 1015 steel also experience dynamic plastic buckling
when they are subjected to large enough uniform radially inward impulses. The
buckling is reproducible and exhibits a predominant wavelength. A tiheory to
describe this buckling is postulated here based on the resistive moments having a
viscoplastic and a directional component. For simplicity of analysis, a linear visco-
plastic constitutive relation is adopted. The preferred mode numbers compare
favorably with mode numbers obtained from experiments on fully annealed 1015
steel cylinders with a length-to-diameter ratio of two (L/D = 2) and radius-to-
thickness ratios of 10.5, 16.7, 22.8, and 35.6.

FIGURE 4.14 TYPICAL BUCKLED SHAPE OF A 1015 STEEL CYLINDRICAL
SHELL SUBJECTED TO AN INWARD RADIAL IMPULSE
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4.2.1 Viscoplastic Moments

Figure 4.15 iliustrates how a resistive moment arises during flow buckling
because of the viscoplastic material property. It is assumed that the compressive
circumferential strain is increasing at every fiber of the shell. At two points A and
B, on the outside and inside of a cross section where an outward portion of a wave
exists, the strain rate is greater at B than at A. On the linearized stress, strain-rate
curve the corresponding states are shown by *he points A' and B'. The higher
strain rate at B given by the pcint B' oa the strain-rate line is associated with a
higher compressive stress than at A. Thus a moment exists on the cross section,
which is resisting the curvature increase. As deformation proceeds, the points A’
and B' move to the left, as indicated in Figure 4.15, which is consistent with the
shell coming to rest. The points separate because of curvature increase, so the
moment increases with deformution.

STRESS, o

STRAIN RATE, ¢,

GA-4999-32

FIBER STRESSES ACCORDING TO THE LINEARIZED
STRESS, STRAIN-RATE LAW

FIGURE 4.15

4.2.2 Theory of Viscoplastic Cylindrical Shells

The first portion of the theoretical treatment of Section 4.1.1 providing Equa-
tions (4.2.1) through (4.2.9) introduces incompressibility, generalized strain rate
and stress, deviatoric stresses, and the flow law. Constitutive equations consistent
with the flow law are taken in the form?

Y€y GOFGG‘, v€, = ooF 3o, ye, = o,F 3o, 4.2.1)

A e s i 0 L g PR 2 e e ot e
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where F = o/ag~ 1 > 0, o being the generaiized stress at infinitesimally small
strain rates and y the viscosity constant of the material. Equations (4.2.1)
represent a special case of the constitutive equations of Perzyna,® and they provide
the following relationship between the generalized strain rate (4.1.2) and the gen-
eralized stress 4.1.3)

yé€ = o/og— 1 (4.2.2)

The viscosity constant y is the slope of the straight line approximating the results
of uniaxial stress experiments (Figure 4.16).

alo

o

STHESS RATIO

é(u)

STRAIN RATE
MA-7504-12A

FIGURE 4.16 LINEARIZED STRESS, STRAIN-RATE LAW

The discussion in Section 4.1.2 on the effect of shell length on the strain rates
also applies to viscoplastic shells. Consequently, we again employ Equation
(4.1.11) in which the axial strain rate at any cross section perpendicular to the shetl
axis is proportional to the midsurface circumferential strain of the unperturbed
motion. The proportionality parameter k(x) lies in the range 0 < k < % covering
very long to very short shells.

4.2.3 The Unperturbed Motion

If the shell cross section remains perfectly circular during its inward motion,
the circumferential and axial strain rates are given by (4.1.12) and (4.1.13}. Also,
the generalized strain rate is given by (4.1.15). We substitute these strain rates into

S A ety T e
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(4.1.9) and (4.2.2) to give the stresses

oy, = —(1 = 2K6%K, + (z/a)(3k¥Y/K,K, + 2ywo/3a)ay, (4.2.3)

Oy = '—(2 - k)UO/Kz + (z/a)(3k2/K|K2 + 47\\!0/3&)0’0 (4.2.4)
v = a’[l + 2K,(1 - K,z/a)ywo/sa] 4.2.5)

d® = oy(1 + 2Kyywo/3a) (4.2.6)

By comparing (4.2.5) and (4.2.6), we see that o is the current generalized stress at
the midsurface.

Equation (4.1.20) is again the equation of motion in which the circumferential
membranc force, by integration of (4.2.4) through the shell thickness h is again
(4.1.21), where now o ¥ is defined by (4.2.6). Hence, the equation of motion may

be written as

W() + 22 - k)a-(,‘y\ivo/3azp = —~(2 — k)a‘o/Kzap 4.2.7)

The solution of (4.2.7) with initial conditions

WO(O) =0 WQ(O) = Vo 4.2.8)
is
3a [ —2(2—k)aoyt/3l2pl 3&29 3at
o= + - - 2.
wo= Vot oG e 20— Koy 29K, 429

Solution (4.2.9) is useful if a numerical approach is taken to solve the buckling
problem. Our approach is to continue the analysis as far as possible with the objec-
tive of obtaining useful design formulas. Our approach requires approximations.
One approximation that allows analysis to proceed is based on the observation that
for meny practical materials the generalized stress does not vary greatly over a wide
range of strain rates. Thus we take the unperturbed generalized stress o to be the
constant stress o averaged over the strain-rate range of the problem, that is,
a = [a(0) ~ a¢l/2. This assumption reduces the equation of motion to

wo = —(2 - Ko /Kyap 4.2.10)

A i b | b . . i .
el R I Y o e B et |
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which, with initial conditions (4.2.8) has the solution

wo/a = (2 — 7/1¢) (4.2.11)

where

r = Vot/2a e = pVIEK,2Q2 - KT (4.2.12)

The unperturbed motion is similar to that described in Section 4.2.3 for
strain-hardening materials s«cept for the obvious difference in the manner of
selecting the average generalized stress. Again, 7¢ is the maximum midsurface cir-
cumferential strain to which the shell is driven by the impulsive load.

4.2.4 Perturbed Motion

Following the initial treatment in Section 4.1.5 provides fcrmulas (4.1.13),
(4.1.38), and (4.1.39) for the axial, circumferential, and generalized strain rates.
Substitution of the generalized strain rate in the constitutive Equation (4.2.2) gives
the generalized stress

o = 0y

1 + 2K2lw° - K;(Z/&)(Wo + W")]y/SaI (4.2.13)

Substitution of the strain rates and the generalized stress (4.2.13) in the stress for-
mulas (4.1.9) gives the stresses

o, = —(1 - 2Ke/K,

+ (2/2) Gk¥K K, + 2yWwo/3al(1 + W' /Wwo)ag 4.2.14)

o = —(2 - KN/K,

+ (2/2) BK2/K K, + dywo/3al(l + W /¥ig) o (4.2.15)

The membrane forces and bending moments resulting from stress distribu-
tions (4.2.14) and (4.2.15) through the shell thickness h are

N, = —h(l - 207/K,

Ny = —h(2 - KT /K; (4.2.16)

s L i S S W
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Ml - (3k2/K|K2 + 27W0/38)(1 + W"/Wo)o-oh3/12a
M, = Gk¥/K,K; + 4ywo/3a)(1 + w'/wo)ogh’/12a 4.2.17)

where we have again replaced the generalized stress at the midsurface with a
constant aversge value.

~ The circumferential bending moment (4.2.17) that resists buckling may be
considered as comprising two components, one a directional moment M, and the

other a viscoplastic moment, M. The directional moment is described in Section
4.1.6. From (4.2.17) we obtain the ratio

M,/M; = (4yK;K,/9%?)wy/a (4.2.18)

which we use in Section 4.2.11 to investigate the relative importance of directional
and viscoplastic moments for resisting buckling.

4.2.5 Governing Equation
In Section 4.1.7 we derived the equation of motion (4.1.52). We now elim-
inate from this equat.on the circumferential membrane force and bending moment
by using the results (4.2.16) and (4.2.17). We also note that
Ny(1 + wg/a) = phwy. Thus we obtain
phw + oh(2 — k)(w"/a)/K,a
+ (3kY/K K,Wy + 4y/3a)w"agh?/12a% = 0 4.2.19)

which, in terms of the dimensionless variables u, ¢, 7, and a introduced in Sec-
tion 4.1.7 by (4.1.54) and (4.1.56), is

i — a23kI/K & +4yVo/30" /(2 — k) + 27;u" =0 (4.2.20)
In the conversion from (4.2.19) to (4.2.20) we have assumed for simplicity that the
coefficient oo/ o of the second term in (4.2.2) is approximately unity. By compar-
ing (4.1.55) and (4.2.20), we see that, in addition to the inertial and buckling thrust

terms, the terms having £~! are the same because they both stem from the dir:c-
tional part of the restoring moment. '

4.2.6 Modal Solution

Following the procedure of Section 4.1.8 by substituting the displacement

RPN

P
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representation (4.1.57) in the governing Equation (4.2.20) leads to

Up— P +Qu/é)iy— RAu,=0 (4.2.21)
where
P, = 4a¥yVK:n*/3(2 - K)a 4.2.22)
Q, = JaZkin*/(2 - KK, (4.2.23)
Rg - 27’[!12 (4.2.249)

The solution of (4.2.21) that satisfies thz initially perturbed displacements and velo-
cities (4.1.58) and (4.1.63) is

u, (&) = A, (ea, + B, (&b, (4.2.25)
in which the amplification functions are
1-b, ~( +aw )+, ¢

A(8) =T +a,— b, ) (w,€) e

[—{(.xn +1-b,)U, +w,U, M (&)

+1{0, +1 - b OM, + m,,M,.'}U,,(§)]/l‘(2 -b,) (42.26)

by~ ta )+ A€

B,(&) =T(1 +a,— b)) e
[— UM, (€) + an,,(g)lzrf/r(z -b,) (4.2.27)

In (4.2.26) and (4.2.27), the foliowing shortt.and notation is used to represent
Kunumer functions® {confluen: hypergeometric functions) of the first and second
kind

M, (&) =M +a,— b,,2 — by, &)

U, () =UQ +a,~b,,? - by.wné)

M, =M\l +a,-b,2-b,,0,)

U, =UQ+a,~b,2-b,w,) (4.2.28)
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In Equation (4.2.26) the primes over M and U denote differentiation with respect
to wq€; the result is then evaluated at § = 1. The remaining symbols are

a, "‘"Qn(l"Pn/mn)/z by =—Q,
w, = (PI+4R})V2 A =—(w,—P,)/2 (4.2.29)

When the strain rate contribution to the restoring moment is small relative to
the directional contribution, the viscosity constant may be set equal to zero. Then
according to (4.2.22) we have P, = 0, which leads to A, = ~Q,/2, b, =~ —-Q,,
wo,=2R,, and A, = ~R,. These special values allow the amplification functions
to be written in terms of modified Bessel functions, resuiting in Equations (4.1.66)
and (4.1.67), with S, = 0 (8 = 0), describing amplification against resistive direc-
tional mmoments only.

When the directional contribution to the restoring moment is small relative to
the strain rate contribution, we may set k = 0 (long shell) so that, by (4.2.23), Q,
= (), Thus A, = 0 and b, = 0, which give the amplification functions the special
forms

An(g) = [(m“ + P el P pye”n TR T O, (42.30)

(w ~P_ )1 £)2 ~(w +P I - )2
Bn(§)=[em“ " f/__e w, P, 3

21/ w, (4.2.31)
The above amplification functions are generally more easily obtained by direct solu-
tion of differential Equation (4.2.21) with Q, = 0.

4.2,7 Amplification Functions

We again illustrate the nature of the amplification functions (4.2.26) and
(4.2.27) by an exampie from a set of experiments on impulsively loaded cylindrical
shells of fully annealed 1015 steel. The data for this example, shell 3a are given
below

3.785 cm (1.49 inches)
0.226 cm (0.089 inch)
15.24 cm (6.0 inches)

shell radius
shell thickness
shell length

-T B Q o
[=}
F vyt

flow stress 600 MFa (87,020 psi)
viscosity 53.5 x 106 s~!

density 7.8 g/cm? (0.28 1b/in?)
impulse 2038 N-s/cm? (0.296 psi-s)
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Equation (4.1.35) gives k(0) = 0.17 and (4.2.12) with Vo= I/ ph = 116 m/s (4550
in./s) gives 7= 0.078, so the duration of motion is t;= 51 us.

Instead of using Equations (4.2.26) and (4.2.27) for A,(¢) and B,(€), we
numerically integrated Equation 74.2.21) to obtain the amplification curves in Fig-
ures 4.17 and 4.18. Again these curves show how a strong preference develops for
amplifying a narrow band of harmonics. The pieferred modes are centered on n =
16 for A, and n = 14 for B,. The variation of the preferred modes with & are
shown by the dashed lines through the peaks of the spectral curves. They show

50 -
[ ' f

0 10 20 30

MOOE NUMBER n
MA-7504-13A

FIGURE 4.17 AMPLIFICATION FUNCTION FROM INITIAL
DISPLACEMENTS (Shell 3a in Table 4.3)

e,
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10 i |
.
i
0 10 20 30
MODE NUMBER n
MA-7504-14A

FIGURE 4.18 AMPLIFICATION FUNCTION FROM INITIAL
VELOCITIES (Shell 3a in Table 4.3}

that the preferred mode numbers do not change substantially after £ = 0.4

(r = 0.670). Thus the choice appears to be made halfway through the duration of
motion and heid until motion ceases.

A ullia

The amplification curves are typical representatives of the curves for all the
steel shells of the experiments. The results are presented in Section 4.2.12, where
the preferred mode numbers are compared with those predicted by our theory.

4.2.8 Approximate Solutions for Terminal Motion

Although it is simpler to generate the amplification curves in Figures 4.17 and
4.18 by numerical integration rather than by forraulas (4.2.26) and (4.2.27) for
A, (&) and B,(§) the formulas provide invaluable information. To determine the

3
¥
H
»
B




250

preferred mode number and the amplification caused by the impulsive loading, only
the terminal amplification term is required. If in formulas (4.2.26) and (4.2.27) we
let ¢—0 and employ the limiting values of the confluent hynergeometric functions,
after removing derivatives by recurrence relations, we obtain

A,(0) = e"‘"*"'"’[M(l +ap— byl = by,wp)

+ M(1 +a, - by2 = byswg)Ag/ (1 — b,,)] (4.2.32)

(A, to,)

B,(0) = 27e M1 +a,-b,,2 —b,,0,)/(1 —b,) (4.2.33)
From the relations (4.2.29) we see that the parameters and arguments for the func-
tions M are positive. Whenever n is large enough, the functions become approxi-
mately M\Q,,Q,,P,) = ep“, and A\, =0, w, = P,, and (1 — b,) =Q,, so
A,(0) =1 and B,(0) =0 as n — oo, which shows that amplification of high
modes is negligible.

When the viscoplastic moments are negligible the terminal amplification func-
tions (4.2.32) and (4.2.33) become (4.1.70) and €4.1.71), formulas that were
derived for the case of hardening moments being neglected in comparison with
directional moments.

When the directional moments are negligible, the terminal amplification func-
tions (4.2.32) and (4.2.33) reduce to

A = [0, + P T 4 0, P Y 20, (4230

B, (0) = 2rf[e"’“‘ Fol2_ o=t P2, (4.2.35)

in agreement with formulas (4.2.30) and (4.2.31) after setting £ = 0. Formulas
(4.2.34) and (4.2.35) may be simplified by noting that w, and P, are always posi-
tive, that w, > P,, and that in general the magnitudes thus make the first term
dominant. Hence

m“—Pn)/Z

A0 = [(w,, +P,) /zw,,]e‘ (4.2.36)

(wp=P,) /2

B,(0) = 2re/w,)e (4.2.37)
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4.2.9 Preferred Modes and Threshold Impulses

We do not derive here the formulas for the preferred modes and threshold
impulses when viscoplastic and directional moments have comparable contributions
to the resistive moment. However, they may be obtained numerically for a
specified shell from formulas (4.2.32) or (4.2.33). Instead, we consider the two
extremes of predominant viscoplastic or directionai moment. In fact, we need treat
only the case of a predominant viscoplastic moment because the case of a predom-
inant directional moment is treated in Section 4.1.12 where we derived forimula
(4.1.92) for the preferred mode and formula (4.1.98) for the impulse-amplification
function relationship; the threshold impulse depends on our choice of A, which in
Section 4.1.14 was suggested as A, = 100.

To obtain comparable preferred mode and threshold impulse formulas when
the viscoplastic moment is dominant, we start with the terminal amplification func-
tion formulas (4.2.36) and (4.2.37). The preferred mode and threshold impuise
can again be obtained numerically for each specified shell, but a large class of cases
exists for which (P,/2R,) is sufficiently less than unity to allow us to find the sim-
ple approximate relation

that maximizes A, (0) and B, (0) with respect to the mode number n. According to
(4.2.28) these maxima are

IR, /4 IRy/4

An = (5/8)e By = (r¢/R,)e (4.2.39)
After subsiituting expressions (4.2.22) and (4.2.24) for P, and R, in formula

(4.2.38), wc obtain the preferred mode formula
N3 = (3a/8a%)[(2 — K)p/KgF]2 (4.2.40)

In the derivation of (4.2.40) we eliminate 7 by using (4.2.12). Within the restric-
tions imposed by our approximations, the resuit (4.2.40) shows that the preferred
mode nuraber is independent of the applied impulse, except through the choice of
Y.

We again base our threshold impulse on the amplification of the initial dis-
piacement imperfections. When R is eliminated from A,, given by (4.2.39), and
T is eliminated from the result by using (4.2.12), we obtain

I=(4/3)[2Q2 - K) /9K 13 (@ *h%py) V3 (h/a) In(BAN/5) (4.2.41)
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Figure 4.19 shows the impulse-amplification curves obtained frcm formula
(4.2.41) for the four shells listed in Table 4.3. If again we choose an amplification
of A, = 100 to determine the critical impulse, we obtain 7400, 14800, 23800, and
48600 dyne-s/cm? for shells 1, 2, 3, and 4, respectively.

100 | T T T
Shell 1 2 3 4
80 - —
- —
&
<
P4 - —
g 60
(.
S o1 :
w
g O -]
s
< L .
20 |- N
- -
0 ] |
0 10,000 20,000 30,000 40,000 50,000
IMPULSE | — dyne-s/cm?
MA-7504-18A

FIGURE 4.19 IMPULSE-AMPLIFICATION CURVES
(Shells of Table 4.3)

4.2.16 Dispiacement and Velocity Imperfections

It is of interest to determine the relative importance of displacement and
velocity imperfections with regard to their influence on the final displacement
amplitude. If we visualize the final shape as consisting only of the preferred mode

U(0,0) = (ANaN + BNbN)SiHN0 (4.2.42)

where, for viscoplastic resistive moments only, the amplifications Ay and By are
given by (4.2.39). Formulas (4.2.39) and (4.2.42) give

max.u = |(5/8)ay + {(r,/2) '/Z/N}bN]e (4.2.43)

For equal contributions to the final buckled amplitude, (4.2.43) shows that

bN/'aN = (5/8)(2/7’[) VIN (4.2.44)
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In the case of the steel shells 1a and 4f of Table 4.3 the imperfection ratios in
(4.2.44) are 91 and 56, respectively, indicating that for equal contributions to the
final amplitude the velocity imperfection has to be a much larger percentage of the
initial uniform velocity than the displacement imperfection is of the initial uniform
shell radius.

4.2.11 Viscoplastic and Directional Moments

The relative contributions to the restoring moment of the viscoplastic and
directicnal moments M and M, can be assessed with the help of formula (4.2.18)
for the ratio M;/My. Because wg = V(1 — t/t;), we have

MMy = (4yVoK K,/9ak) (1 — t/t;) (4.2.45)

where k = k(0) is given by (4.1.35) with Q@ = +/3/2. Thus the moment ratio is a
linear function of time and directional moments always dominate at the end of
motion.

For the steel shells of Table 4.3, of Section 4.2.12, the products of the viscos-
ity constant y and the initial strain rate V,/a lie in the narrow range 0.153 < yV,/a
< 0.163, so for illustrative purposes an average value of 0.158 is chosen in
(4.2.45). Figure 4.20 shows the moment ratio (4.2.45) as a linear function of the
time ratio t/t; for various values of the parameter k. By examining the positions of
these lines relative to the line M/My = 1, we see that for the steel shells of Table
4.3, the viscoplastic moments dominate for 0 < k > 0.3 (L/D 2 1.27) and that
for 0.4 < k < 0.5 the directional moments dominate. The experimental shells
have L/D = 2, which corresponds to k(0) = 0.17; thus the restoring moments
were primarily viscoplastic.

4.2.12 Comparison of Theory and Experiment

Table 4.3 contains the main experimental data for 16 fully annealed 1015 steel
shells, 6 inches long.

Figure 4.21 is a stress-strain diagram obtained from a static tensile test on one
of several specimens cut from the cylinders. It shows negligible strain hardening
below about 3% strain. According to the experimental results of Manjoine,* the
material is extremely sensitive to rate of strain; both the yield stress and the length
of the horizontal or ideally plastic portion of the stress-strain curve increase with
strain rate.
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MA-7504-16

FIGURE 4.20 TIME VARIATION OF STRAIN RATE/DIRECTIONAL
MOMENT RATIO FOR FIVE LENGTH/DIAMETER
RATIOS, EQUATION (4.2.45)
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Table 4.3

EXPERIMENTAL DATA FOR CYLINDRICAL SHELLS OF 101, STEEL

Shell
Number

la
la

Radius
a
(cm)

3.795
3.795

3.815
3815
3.815
3.815
J3is

3.78¢
3.780
3.780

3.835
3.835
3.835
3.838
5.835
3.835

Thickness
h
{em)

0.107
0.107

6.168
068
0.168
0.168
0.168

0.213
0.214
0.214

0.366
0.366
0.36<
0.365
0.366
0.366

a/h

356
35.6

228
228
22.8
228
228

16.7
16.7
16.7
10.5
10§
10.5
10.5
10.5
16.5

Impuise
I
(N-s/m?)

708.9
607.6

1382.3
7443
744 3
638.0
638.0

2038.2
1514.2
1456.0
3519.6
2095.4
2038.4
1747.1
1513.8
1513.8

inttial
Velocity
Vo
(m/s)

85.2
73.0

105.7
56.9
56.9
488
488

115.6
859
82.6

116.4
135
71.5
61.2
LX R
s3.1

Final strain
€oltp)
(%)

9.9
6.0

M.ode

N

26
26

Shel data: 1015 steel, fully anncaled, » = 7.8 g/cm?, length 6 inches, k(0) = 0.17.

Table 4.3 (concluded)

EXPERIMENTAL DATA FOR CYLINDRICAL SHELLS OF 1015 STEEL

Radius
a
(inch)

1.494
1.494

1.502
1.502
1.502
1.502
1.502

1.488
1.488
1.488

1.510
1.510
1.510
1.510
1.510
1.510

Thickness
h
(inch)

0.042
0.042

0.066
0.066
0.066
0.066
0.066

0.089
0.089
0.089

0.144
0.144
0.144
0.144
0.144
0.144

a/h

35.6
35.6

22.8
228
228
2238
228

16.7
16.7
16.7
10.5
10.5
10.5
10.5
10.5
10.3

Impulse
1
(dyne-s/cm?)

7,089
6,076

13,823
1,443
7,443
6,330
6,380

20,382
15,142
14,560

33,196
20,964
20,384
17,471
15,138
15,138

Initial
Velocity
Vo
inch/s

3,354
2,275

4,162
2,241
2,241
1,521
1,921

4,551
3,381
3,281

4,581
2,893
2,813
2,411
2,089
2,089

Final strain
€,(tg)
(%)

Mode

Shell data: 1015 steel, fully annealed, p = 7.8 g/cm’, length 6 inches, k(0) = G.17.

N

26
26

19
19
19
N
22

255
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FIGURE 4.21 STRESS-STRAIN RELATIONSHIP FOR
FULLY ANNEALED 1015 STEEL

Based on these results, an empirical relation between yield stress and strain
rate has been suggested by Symonds and Bodner® in the form

ocla, =1 + (¢/D)!Ve (4.2.46)

where o, is the static yield stress, and p and D are empirical constants. For mild
steel with oy = 30,000 psi (207 MPa), these constants are p = 5 and D = 40.4
s!. The stress strain-rate relationship (4.2.46) is shown in Figure 4.22. In the
theory, the linear strain-rate law (4.2.2) is used. We have chosen this line to be
the tangent to the curve (4.2.46) at the point with itc abscissa equa! to the initial
strain rate. The slope of this line is

p = yog=o,/pDVred VP (4.2.46a)
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where € = €(0) = Vy/a = I/pha. The intersection of the line with the stress
axis is

oo = [1 + /D)1 = Upe, 4.2.47)
150 —T T T
o~ ¢ = g +ué
'_\i 100 i~ ' -
= ]
o :
]
| olo, = 1+ (&/D)VP \
[7)] y '
[7,] []
(77 ) ]
« ! 4
% %0 '
30 } oy ':
)
X
]
0 L i NN
0 1000 2000 2000 4000
STRAIN-RATE, ¢ — s~!
GA4999-34A

FIGURE 4.22 STRESS, STRAIN-RATE RELATIONSHIP FOR FULLY
ANNEALED 1015 STEEL

The experimental technique is that described in Section 3.2.7, and the data are
listed in Table 4.3. Theoretical results are listed in Table 4.4, and compared with
experimental mode numbers; the prediciions are given by formula (4.2.40). Gen-
erailly, the theoretical and experimental mode numbers agree. We recall that
formula (4.2.40) assumes predominance of the viscoplastic contribution to the res-
toring moment and that Py /2Ry is sufficiently less than unity to allow us to obtain
(4.2.40) without much error. All the shells have L/D = 2 giving k = 0.17, and
this low value was seen in Section 4.2.10 (Figure 4.20) to justify the assumption of
viscoplastic predominance. As for the ratio Fy/2Ry, each case must be verified;
for the shells in Table 4.3, the assumption is satisfactory.

Figures 4.23 and 4.24 show the developed final shapes of shells 32 and 4a.

The shapes represent two examples of the experimental data from which the
number of waves are obtained. Figure 4.25 shows the resu!t of a harmonic analysis

R e

e WU Bt B w215,
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Table 4.4

THEORETICAL AND EXPERIMENTAL MODE NUMBERS
FOR CYLINDRICAL SHELLS OF 1015 STEEL

Steain-Rate Law Parameters

Final
Strain Theoretjeal
Shell Impulse  ¢lo) alo) o, m y Lh Mode
Numter  (N-s/m?)  (s™F)  (MPa)  (MPa)  (Na/mD)  (ug) (%) N
la 708.9 2245 669 57 41157 N4 9 23
ib 607.6 1924 655 565 46,535 823 3.7 22
ry 13823 N 639 592 35,366 59.7 14 18
b 443 1492 632 54 57,082 1043 23 15
2c 7443 1492 632 47 57,082 1043 23 [}
2 €380 1279 620 37 64,528 120.2 1.7 t4
2e 633.0 1219 620 537 64,528 1202 [N 4
h 2038.2 3058 698 600 32.126 36 87 1§
b 1514.2 2272 670 n 40,744 0.6 50 14
ic 1456.0 2185 666 574 42,053 12 4.6 14
4a 33196 3034 697 599 32,333 519 LR "
4 2096.4 1916 654 565 46,741 028 37 1G
4 10384 1863 652 543 41,715 849 36 10
L 17471 1597 633 552 54,049 919 2.7 9
4e 15138 1384 626 542 60,598 SN 20 []
4 1513.8 1384 626 542 60,598 ma 20 9

* Eouation (4.2.40).

Table 4.4 (concluded)

THEORETICAL AND EXPERIMENTAL MODE NUMBERS
FOR CYLINDRICAL SHELLS OF 101 STEEL

Strain-Rate Law Parameters

Final
Strain Theom;ul
Shell Imputse elo) alo) a, " y . % Mode
Number  (dyne-sfem?) ') (pai) (psil  (Ib-s/in?)  (us) (%) N
la 1.089 2,245 97,000 83,602 9 N4e 49 PX]
b 6,076 1,924 94,968 81,974 6.7§ 823 3.7 2
b1 11,823 21 99883 85906 L1 59.7 14 18
b 7.443 1,492 91,745 79,39 328 1043 23 s
P T.443 1,492 91745 T79.39% 828 1043 23 15
u 6,380 1,219 89,871 77,897 9.36 120.2 17 14
2e 6,380 1279 89871 71897 9.36 120.2 17 14
h 20,382 J058 101276 87,021 4.66 536 8.7 15
3b 15,142 2272 91,163 83,730 591 10.6 so 14
3 14,560 2,185 96,639 83311 6.10 n.2 46 14
4 33,19 3,034 101,161 86,929 459 539 L1 t
4 20,964 1.916 94911 8199 6.78 238 37 10
& 20,384 1863 94548 81,638 693 849 kX ] 1]
4 15,138 1,384 92,588 30,070 184 919 27 9
de 15.138 1384 90819 8,655 879 Hn.s 20 9
af 15,138 1,384 90819 78,655 8.79 1ns 20 9
* Equation (4.2.40).

Experimentat
Mode
N

26
26

19
19
2
22
22

13
4
14

9

(- - V-]

Expetimental
Mode

B
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of the profile of Figure 4.24 for sheil 4a. The representation was taken in the form

u@,r9) = 3 cy(ry)cos(ng — 6,) (4.2.48)
7

with data recorded every degree, and the coefficients c, were plotted against the
mode number, n. Peaks occur at n = 7 and 10, and harmonics above n = 16 are
negligible. Excluding the ovalling imperfection of n = 2, the largest value of ¢, is
at n = 7, which may be taken as the preferred mode. This number compares with
n = Y obtained by counting crests, the experimental mode numbers in Tables 4.3
and 4.4 were obtained from crest counts.

084 T T r N
0.72 .
— -4
0.60 -
3 0.48 [~ ]
Z 036 |- -
— —
0.24
0.12
0 | N | B
0 90 180 270 360
0 — degrees GB-4999-39
FIGURE 4.23 BUCKLED FORM OF SHELL
0.36 - : - : -
g 0.24 + -
Z 012} -
0 ~ | | i
0 90 180 270 360
& — degrees
GB-4990-40

FIGURE 4.24 BUCKLED FORM OF SHELL

AR SR s ST

btk Wb s

B LT B L T N Ty

of




260
o‘os ]lr1(T1[mr(TTTr[(¥lTTTT!!]TllIlITY_T
}
0.04 |~ -
-g 0.03 ~
|
o 002 b~ —
\/
0.0 -
0 !
0 10 20 30 40
° GA-4990-42

FIGURE 4.25 RESULT OF HARMONIC ANALYS!S ON SHELL 4

4.3 CRITICAL VELOCITY FOR COLLAPSE OF CYLINDRICAL
SHELLS WITHOUT BUCKLING

High speed collapse of shells of circular cross section occurs i many practical
devices. Such devices are used in explosive closure for obtaining gas-tight pipe
seals, in magnetic field constriction for producing intense transient magnetic fields,
in shock tubes driven by rapidly collapsing a cylindrical reservoir (o produce high-
pressure and high-velocity gas flows, and in armor-piercing and oil well perforation
by metallic jets produced by repidly collapsing conical shells. In these devices, per-
formance is optimized whenever plastic buckling is absent during the collapse
motion.

The new feature in the treatment of dynamic buckling is that the inward
unperturbed displacement is large, which results in an appreciabie thickening of the
shell. Because of this thickening the thrust and the resistive motion of the per-
turbed state increase, the dependence on the thickness being, respectively, linear
and cubic. This dependence on thickness means that the stability improves as
motion proceeds sn that it is possible for departures from the circular form to be
held within acceptable values. Also, growth of departures requires time, which
again suggests that they may be held within acceptable values, in this case by
sufficiently high collapse velocities.
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A critical collapse velocity will be defined for a specific amplification factor
(say, 100) and a specified shell (both geometry and properties specified). Collapse
velocities above critical will result in acceptable departures from circularity; those
below critical will nnt.

In the theoretical treatment to follow, we ignore the directional contribution
to the restoring moment or we consider the shells loug enough to allow us to
neglect this contribution. Also, we take the collapse velocity to be constant, in
other words, we assumc that only a small part of the initial kinetic energy is
absorbed as plastic work. We shall treat the two special cases of a linear strain-
hardening iaw and a linear strain-rate law.

Let the initial and current average radii of the cylindrical shell be r, and r(1),
ard let the initial and current wall thickness be h, and h(t). Because we are consid-
ering departures from the circular form that are smail compared with the radius,
these radii and thicknesscs are related approximately by the plastic incompressibility

condition.

h() = hgr./r(t (4.3.1)

Let the initial departure of shell cross section from the circular form be w{(6)
measured radially inward, and let additional radially inward deflections that arise
during collapse be w(8.t). The total inward departure from a circle of radius r(t) is
therefore v' + w;. Then, the current curvature is

k= 1/r+ (w+ w + w + w'/r? 43.2)
where primes denote differentiation with respect to the angular coordinate 6.

The equation of motion for an element of the collapsing shell is readily found
with the aid of Figure 4.26. Neglecting rotary inertia we have

- M 9Q 8 _ . —_—e
Q N 0 + NG)\ p = ph(r — w) (43.3)

where dots denote differentiation with respect to time. In (4.3.3), d\ is the arc
length corresponding to do and subtending an angle d¢ at the instantaneous center
of curvature so

- 39
X ax 4.3.49)

Because the displacements w and w; are smal!, we make the approximation dA ~
rde.
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GA-3570-30

FIGURE 426 NOTATION OF RING ELEMENT IN MOTION

We now combine (4.3.2), (4.3.3), and (4.3.4) by eliminating ¢, x, and Q to
obtain

M2+ N[/t + (w+w' +w;+w/')/rll =ph(r ~w) +p 4.3.5)

Again, because the displacements w and w; are small the thrust N i3 the same as
the thrust in the equation governing unperturbed motion

N/r = phi + p (4.3.6)
Equation (4.3.6) allows us to simplify (4.3.5) to give
M'/t2+ Nw + w' + w, + w')/r? = —phw 4.3.7)
It remains for us to establish expressions for the bending moment and thrust
to convert Equation (4.3.7) into a partial differential equation governing the per-

turbed displacement, w. These expressions are derived below inr linear strain har-
dening alone and for a linear stress-strain rate law.

4.3.1 Strain-Hardening Moments Oniy

If no strain-rate reversal occurs over a cross section of the shell, the
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moment-curvature relationship is
M= EI(x - x;) (4.3.8)

where E,, is the hardening modulus, I = h3/12, and «, is the initia} curvature. The
current curvature x is given by (4.3.2). Let the compressive stress at the midsur-
face of the shell be . Then the thrust is simply

N = oh 4.3.9)

Corsiderable simplification is introduced if we restrict our theory to materials with
stress-strain curves that permit the hardening portion to be approximated by a
strrioht line with a slope that does not cause the flow stress to rise substantially
above the yield stress in the strain range of interest. Then in (4.3.8), E, is a con-
stant and in (4.3.9) we may take o to be a constant, chosen as an average stress
over the strain range. In this way, we linearize the problem.

Substitution of M and N given by (4.3.8) and (4.3.9) into (4.3.7) and the use
of the curvature expression (4.3.2) and the incompressibility relation (4.3.1) lead to
the equation

Eph2r2(w + w1218 + G (w+w' +w, + w')/rt+ pw =10 (4.3.10)

If we introduce the dimensionless quantities

u =wir, vy = w/r, & =1/r, T = ac,l/r,

¢ =Eu/p oa? =h212r} 8 =E,/F (4.3.11)

Equation (4.3.10) becomes

E5 +u" + (1 + 5% u" +s%% = —s%4u,+u") 4.3.12)

where
E=1/t,=1~-Vi/r,=1-Vrfac, = 1 ~ qr (4.3.13)
qQ = V/g, (4.3.14)

s2 = 1/a?B = 12(r,/h,)*(F/E,) 4315
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The buckling displacement and initial departure from circularity may be
represented by

u(@,7) = Y [F.(r) cos n8 + G,(r) sin né] (4.3.16)
n=2

u;(® = Y [A,cost né + B, sin nél (4.3.17)
ne2

the first mode being omitted because it does not contribute to buckling. Substitut-
ing (4.3.16) and (4.3.17) intc (4.3.12) yields
£, + (n? = N{n? - s¥NDf, = s¥5(a? - 1) (4.3.18)
where
f,. = F,(+) /A, (4.3.19)
is the amplification function. As long as the coefficient of f, in (4.3.18) remsins

positive, the amplification function will not experience suhstantial grcwth; that is,
collapse will remain stable whenever

n > st = ¢/ aB (4.3.20)

The minimum vaiue of £ occurs when the inner racius is zero and hence total col-
lapse hac occurred. From geometrical considerations, we then have miné = \/3 a,
so according to (4.3.20) modes that are stabie at the termination of collapsv have
mode numbers that satisfy the inequality

n > 3a/vB = (h,/r1,) (F/E) /2 (4.3.2D)

This result shows that in practical cases almost all wodes are stable at the 2nd of
collapse.

For negative values of the coefficient of f, in (4.3.18), the amplification func-
tion can grow substantially. Initially, when ¢ = 1, modes with anumbers satisfying

n<s=l/a-Bg 4.322)

are unstable. Howeve:, £ = r/r, decreases from unitv to v3 &, which is generally a
small vaiue; thus (4.3.21) or (4.3.22) implies tnat many modes inay be initially
unstable, but almost ail modes are eventually stable.

D) i M o By o ¢
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For each mode, it is of interest to determine f, when n = s£?, that is, at the
value of £ when the types of growth change from being exponential in character to
being trigonometrical. These values of f, obtained by numerical integration of
(4.3.12) are given in Figure 4.27, for ire choice s = 30, as a function of q. This
parameter, according to (4.3.14), represents the collapse velocity V. For each n, f,
decreases with increasing q because the growth duration decreases with increasing
collapse velocity. At each q, the value of n for which f, is maximum is n = 10.
This value is achieved when § = vn/s, which for s = 30 and n = 10, results in ¢
= r/r, = 0.58.
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FIGURE 4.27 FINAL MAGNITUDE OF fn FORs =30
Critical mode is n = 10.

Curves such as those in Figure 4.27 were generated for 15 < s < 200. From
these curves, the values of q for f, = 10 and f, = 100 were determined and are
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shown in Figure 4.28. For a particular value of s, the critical velocity represented
by q is greater for f, = 10 than for f, = 100 because of the shorter durations
required to restrict the amplification. The critical mode numbers increase with s,
but are nearly the same for both curves; an increase in s can be the result of
decreasing the shell thickness or reducing the hardening modulus, as can be seen in
(4.3.15), so higher mode numbers should be expected with increasing s.
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To determine the initial collapse velocity of a specific cylindrical shell, we first
calculate the value of s by substituting r,, h,, o, and E,, in formula (4.3.15). For
example, if the radius-to-thickness ratio r,/ h, = 30 and the hardening modulus,
average flow stress ratio is E,/o = 4, we obtain s = 52. If the critical collapse
velocity criterion is f, = 10, the curve in Figure 4.28 gives q = 130. If the plastic
wave speed in our example is c, = (E,/p)"/? = § x 104 cm/s, we can now obtain
V from Equation (4.3.14) as V = 6.2 x 104 cm/s = 0.6 mm/us = 1800 ft/sec.

Direct experimental evidence is lacking to check the results of the preceding
analysis. However, collapse velocities for copper shaped-charge liners are about 1
mm/us (3300 ft/sec), which is in qualitative agreement with the foregoing result.

4.3.2 Strain Rate Moments Oaly

We assume here that the constitutive equation can be adequately represented
by the linear stress/strain-rate law

o= g, + ué (4.3.23)

where o, is the flow stress extrapolated linearly to static strain rates, and u is the
viscosity parameter. At a material point in an elemental sector of the cylindrical
shell located a distance z measured radially inward from the center or midsurface
area of the sector, the circumferential strain rate is approximately

€@,z,0) = i(1 + 2z/0)/r - zx, (4.3.29)
where 0 is the angular coordinate, t is time, and «, is the curvature rate of the ele-
mental sector caused by departure from circularity. Time differentiation of the
current curvature (4.3.2) gives

k= —irt— (w+w +w+ w2/ + (w+w') /e (4.3.250)

- "i'/f2+kb

ky=— (W +w' +w,+ w2/ + (w+w") /r? (4.3.26)

The circumferential bending moment on a sheli element of unit width is

2
M =- j- o(2) dz = pl(= 2i/r* + k)
w2

- ul(k = /%) (4.3.27)
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where we have used (4.3.23) and (4.3.24) for the stress and strain rate, and
(4.3.25b) to introduce the curvature rate k. Also I = h3/12 is again the second
moment of area o: the cross s=ction.

Substituting M from (4.3.27), using (4.3.25a) for x and N =¢°h in the equa-
tion of motion (4.3.7), and setting f = —V lead to

uh [(w + W) o+ (W W ow + w)2av/e et

+o(w+ w + w + w')/rt= —pw (43.28)

In (4.3.28), o° is the midsurface compressive stress where the compressive strain
rate is V/r, so the law (4.2.23) gives

o’ = g, + pV/r (4.3.29)
We now introduce the dimensionless quantities
u =wr, u =w/r, £ =11, T =, t/pr]
o =hf12t2 v =plu, B =pVr/u, vy =prlo,/ul (4.3.30)

where o, is a reference viscosity parameter. After substituting (4.3.29) in (4.3.28)
and converting to the dimensioniess quantities (4.3.30), we obtain

g5 + va‘{(u + U+ QB/O W+ "+ u + u;')]"

+ &0 + B/y)u+ '+ uy+u’) =0 (4.3.31)
where

U = du/or u' = 9u/de

In (4.3.31), we can replace £ = r/r, = | =Vt = | — 87 with the variable ¢
through the relation £ = e™*. When this is done, (4.3.31) becomes

i + 0+ (ave’t/B) [(u + u") + 2w+ v+ u; + u{')l"

+ (/B + vBet/y)(u + u' + u; + u') =0 (4.3.32)
where

u = 91/0e u' = du/96
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The variable € = en(1/¢) = en(r,/r) is the average true circumferential strain.
We now solve (4.3.32) for the initial conditions
u(@,0) =0 u(6,0) = Vv,(@ (4.3.33)

the initial displacement imperfections being represented by u,(9) in the equation
itself.

Let us represent the initial displacements and velocities by

o0

u;(® = ¥ (A, cos nd + B, sin no) (4.3.34)
n=1

u(@,0) = 3 (C.cos n§ + D, sin né) (4.3.35)
n=~i

In physical terms, A, and B, are fractions of the initial radius r,, and C, and D, are
fractions of the initial velocity V.

Let us represent the buckling displacement similarly by

u6,0) = £ [Fale) cos 0 + G,(©) sin no] (4.3.36)

el

in which the coefficients F,, and G, are to be determinzd. Substituting the series
representations (4.3.34) and (4.3.36) into the governing equation (4.3.32) and set-
ting to zero the coefficients of cos n @ and sin n ¢ lead to

E, + a,(e)F, + b,(6)F, = —b,(e)A, (4.3.37)
G, + a,(€)G, + b,(e)G, = —b,(e)B, (4.3.38)
a,(e) = 1 + (a%/B)e’ n’(n? — 1) (4.3.39)

bae) = [2a2/B)e™ nt— /8D (1 + vpet/ | (2= 1 (@340
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The initial conditions for F, and G, from (4.3.33) and (4.3.35) are

Fo,lo)=0 F,(0)=C, G,l0)=0 G,lo)=D, (4.3.41)

By introducing the function H, defined by H, (¢) = F,(e¢) + A, into Equa-
tion (4.3.37) we obtain the set of homogeneous equations

H, + a,(e)H, + b (e)H, = 0 (4.3.42)

where a,(e) and b,(e) are given by (4.3.39) and (4.3.40). A fundamental pair of
solutions H!" and H? to each equation of the set (4.3.42) exists if the initial
conditions are

HG)=1 HY@()=0 (4.3.43)

H?G0) =0 HP@G)=1 (4.3.44)
Consequently, the solution of (4.3.42) with initial conditions
H,(0) = A, H,(0) = C, (4.3.45)
is
H,(e) = A H{"(e) + CH?(e) (4.3.46)
If we start with H,(e) = G,(¢) + B,, the foregoing procedure leads to

H,(e) = B,H!"(e) + D, H?(e) (4.3.47)

Because the current departure from circularity is the sum of the initial displacement
(4.3.34) and the buckling displacement (4.3.36), the required solution is

u;(0) +u(g,e) = 2” [H,ﬁ” () {A, cos nd + B, sin né}
n=1

+ H® () {C, cos nd + D, sin nol] (4.3.48)

The advantage of introducing function H,, is that the fundamental set of equa-
tion (4.3.42) with initial conditions (4.3.43) and (4.3.44) need be solved only once
for all initial displacements and velocities. Note that solution (4.3.48) brings out
clearly the amplification effects of the functions H!" (¢) and H'? (¢); the former
amplifies the initial shape and the latter amplifies the initial velocity needed to pro-
duce the current departure from a circular shape.
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The character of the amplification functions can be illustrated by solving
numerically the fundamental set of Equations (4.3.42) with initial conditions
(4.3.43) and (4.3.44). For this purpose the dimensional and material properties
chosen are as follows;

shell radius r, = 2.517 inches (6.393 cm)
shell thickness h, = 0.141 inch (0.358 cm)
copper density p = 0.321 Ib/in® (8.9 g/cm?)
flow stress o, = 45,000 psi (310 MPa)
viscosity s, = 3.625 psi-s (1724 N-s/m?)
collapse velocity vV = 3281 ft/s (1000 m/s)

Corresponding to these physical quantities are the dimensionless parameters defined
in (4.3.30).

a = 00162 B = 2276 y = 17.46 v = 001 (and 1.0)

The values of u, and » = 1 correspond to CFHC copper properties for a strain rate
of 10° s. Because the compressive circumferential strain rate is initially Vir, =
15.6 x 103 sec™!, » is less than unity. Urfortunately, data are not available in the
literature for estimating v, so a suitably small value of » = 0.01 was chosen to
obtain the influence on the amplification functions.

For mathematical convenience, the amplification functions have been
expressed in terms of the average compressive circumferential strain, e. To assist
physical interpretation, it is recalled that the average radius r and the time t
corresponding to the strain ¢ are determined by r = §r,, ¢ = e™*, t = (r, — D/V
= (1 — &)r,/V. Collapse is complete when the inner radius of the shell is zero and
¢ = (h,/2r,)'%, from simple geometric considerations. Thus, for the foregoing
data, min £ = 0.168, max ¢ = 1.78, and max t = 53 us.

For brevity, the remaining discussions is confined to the amplification func-
tion H!" (¢); the overail behavior of H{? (e) is similar.

Figure 4.29 shows the amplification function H,‘;” (e) plotted against strain or
dimensionless time for several mode numbers, all for » = 0.01. The maximum
value reached is H." = 55 when the strain is ¢ = 0.85 in mode n = 48. Figure
4.30 shows H " plotted against mode number with strain as a parameter. At a
given time (or e value), certain modes are being preferred in the buckling process:;
these modes are grouped about a central preferred mode where the peak
amplification occurs. The preferred mode numbers decrease with time. For exam-
ple, the central preferred mode number decreases from 75 to 42 as the strain
increases from 0.4 to 1.2, the greatest amplification being 55 when € = 0.8 (¢ =
r/t, = 0.45) in mode 52.
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Figures 4.31 and 4.32 show how the curves in Figure 4.29 and 4.30 change
when the viscosity parameter is increased by a factor of 100 to become » = 1.0.
Qualitative similarities exist, but the amplification factors are drastically reduced
because of the increased bending resistance to buckling. For Figure 4.31 the max-
imum value of H!" is now 3.3 in mode 12, when the strain is 0.8 (c.f., H{V = 55,
n = 48, ¢ = 0.85 for v = 0.01). From Figure 4.32, the central preferred mode
number decreases from 24 to 7 as € increases from 0.2 to 1.2.

The maximum value of the amplification function in the sense just described
is the value chosen to define the critical collapse velocity. This maximum is desig-
nated H\"", N being the preferred mode determined by the location of the peak of
the envelope of the curves shown in Figure 4.30 for » = 0.01.

Figure 4.33 shows three curves that relate the maximum amplification factor
H{" to the constant imploding velocity V represented by the dimensionless parame-
ter 8 = pVr,/u,, each curve being for a specific value of the parameter a =
h,/ V12 r,, or radius-to-thickness ratio r,/ h, as labelled. The remaining parame-
ters have the values v = 0.01 and y = 17.46. The curves may be considered as an
illustration of the effect of shell thickness on the relationship between H,&” and 8
or V. The value of N attached to each curve is the preferred mode number for
buckling. Although no obvious theoretical reason exists for the mode number
being the same along each curve, calculations showed that this was the case. The
central curve corresponds to the previously illustrated example, in that r,/h, =
17.85 gives @ = 0.0162 and a point on the curve is 8 = 22.76 and H\" = 55.

The curves show how the amplification factor decreases as the velocity
increases. They also show how instability increases with radius-to-thickness ratio.
For example, when 8 = 22.76, the ampiification factor increases from 11 to 470 as
r,/h, increases from 10 to 30,

Figure 4.34 shows the relationship between the amplification factor and the
collapse velocity when the viscosity parameter has been increased by an order of
magnitude to » = 0.1. The stability has essentially doubled throughout in that the
critical velocity associated with a specific amplification has halved.

Figure 4.35 shows three curves that relate the radius-to-thickness ratio of a
cylindrical shell to the collapse velocity, each curve being for a specific amplification
factor and all curves being for » = 0.01 and y = 17.46. The curves were obtained
from cross plots from Figure 4.33 at amplification factors of 10, 100, and 1000.
Figure 4.36 shows a similar set of curves obtained from Figure 4.34 for a viscosity
parameter value of » = 0.1.
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Curves such as those construcied for Figure 4.35 and 4.36 for OFHC copper
may be used for stability design of devises that involve high-spead collapse of shells
of citcular cross section. For example, a trial design with the values of the numeri-
cal example just discussed, having a radius-to-thickness ratio of r,/h, = 17.85 (o
= 0.0162) and manufactured with enough precision to allow an amplification of
H " = 1000, has a critical velocity parameter of about 8 = 15, according to Figure
4.35. With a copper density of p = 8.9 g/cm?, an initial radius of r, = 6.393 cm
(2.517 inches), and a reference viscosity of u, = 0.25 x 108 dyne-s/cm?, the value
B = 15 gives a critical collapse velocity of 0.67 mm/us. Higher collapse velocities
should therefore result in stable collapse.
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5.  DYNAMIC BUCKLING OF CYLINDRICAL SHELLS
UNDER AXIAL IMPACT

A great deal of work has been done on buckling of cylindrical shells under
dynamic axial loads. The motivation for much of this work stems from the design
of missiles to sustain the sudden application of thrust from rocket engine ignition.
The thrust-time history is idealized as a step or a linear ramp increase to a constant
operating thrust. The concern is that the dynamic buckling load may be smaller
than the buckling load for a slowly applied thrust. Other applications occur in
transportation accidents, where the loading is from impact and often exceeds the
static buckling load.

In this chapter, as in the rest of the monograph, we are concerned mainly
with buckling in which the axial load is higher than the static buckling load. We
also include the classical theory for static buckling (perfect shells) anu the essentials
of Budiansky and Hutchinson's' theory for dynamic buckling under step loads,
which can occur at loads lower than the static buckling load of even imperfect
shells. But emphasis is on impact buckling at high lcads. Final buckles in shells
under these loads are sirilar in form to the familiar diamond pattern of static buck-
ling, but the wavelengths are much shorter and their aspect ratio is much larger
(they are flatter, with a circumferential wavelength several times the axial
wavelength). Thicker shells buckle in symmetric modes during plastic axial flow.

We consider impact at both clustic (Section 5.1) and plastic (Section 5.2) axial
stress levels. In each case, we determine the modes of buckling and the time at the
onset of large deformation. These results can be used for design to avoid threshold
buckling and also to provide the initial conditions for analysis of plastic collapse
buckling (Section 5.3) in modes determined by the threshold buckling theory. The
experiments discussed in Sections 5.1 and 5.2 were designed to limit the load dura-
tion so that terminal observations could be made of threshold buckling not
obscured by the complex folding and stretching of collapse. The buckling experi-
ments discussed in Section 5.3 were allowed to continue through collapse. A sim-
ple kinematic theory is used to calculate average collapse forces, which are much
lower than the impact forces that initiate buckling.

5.1 DYNAMIC BUCKLING OF CYLINDRICAL SHELLS
UNDER ELASTIC AXIAL IMPACT
5.1.1 Analytical Formulation

In exneriments described in Section 1.2, Figure 1.3, aud discussed in more
detail in Section 5.1.5, cylindrical shells are impacted at one end by a massive ring,
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which sends a step axial stress wave up the shell. The shell buckles before any sig-
nal is received from the opposite end (free in these experiments), so in the theory
the shell is taken arbitrarily long. Also, as in the elastic buckiing of bars in Section
2.2, the thrust is assumed uniform throughout the iength cf the shell, thus neglect-
ing any effects of the moving axia! stress front. As will be shown, this is a reason-
able assumption for the shell for the same reason as for the bar. the buckle
wavelergths are very short compared with the distance the stress wave travels while
the buckles form. Thus, in the analytical formulation we consider a long, thin
cylindrical shell subjected to a suddenly applied, constant compressive force uni-
form throughout the shell.?

For studying the early displacements, a small-deflection linear theory suffices.
The experiments show that the wavelengths of buckling established by this early
motion carry over to large deflection buckling and even to the permanent plastic
buckle pattern. Also, the dominant buckle wave numbers in the circumferential
direction are n > 4, so the Donnell equations derived in Section 3.5.2 for_bucklins
under radial loads apply here also, with the applied in-plane force being N, rather
than ﬁ,. With time denoted by t, axial force ﬁx per unit length taken positive in
compression, and cocrdinates taken as in Figure 3.37, the appropriate Donnell
equations for axial loading are obtained from Equations (3.5.37) and (3.5.40) as
follows:

2 2 2
W+ N, 2 _ w _ 1 F _
DV4w + N, pwe (w + w;) + ph 30 s o 0 (5.1.1}
2
V'F = - Eb 8w (5.1.2)
a 9dx
where
2
9? 92
v - +
dx? a2602]

In these equations, x is axial coordinate, @ is circumferential coordinate, w is posi-
tive inward displacement measured from an unstressed initial imperfection displace-
ment w;, p is material density, E is Youug’s modulus, h is wall thickness, a is
radius, and F is Airy’s stress function for in-plane force resultants produced by the
buckling deformation [see Equations (3.5.36)].

It is convenient to use dimensionless variables

— 172 - y1/2
N N, N
£ = x[—bi] , N ™ aO[-B-l , T ™= m't (5.1.3)
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Then Equations (5.1.1) and (5.1.2) become

92 . 1 9?%F
V‘w+_a—?(w+wi)+w_aﬁ -EF-O (5.1.4)
)
2
VF - E%D %g- (5.1.5)
aN, £
in which
2
92 92 alw
V4 = I‘SE; + —67 . = or? (5.1.6)

To simplify the mathematics, the ends of the shell are taken to be simply sup-
ported. The boundary conditions, from Equations (3.5.41), are therefore

w=92w/gx? = 0 at x = O,L (5.1.7

As already discussed, L is taken arbitrarily large. The condition at the impacted
end of the shells in the experiments is more closely approximated by a clamped
boundary (zero rotation), but the experiments show that this boundary condition
does not affect the buckling significantly because buckling extends over many axial
waves. The conditions of simple support are satisfied by

w(¢,n, 1) = f f W () sina,é sinB,m (5.1.8)

m=! a=1
Fg.n,1) = 3 3 Fop(r) sinagé sin,n (5.1.9)

me=| n=!

in which
1/2 112
mw | D n|{D

- (2] a-22] e

The initial displacement is also expanded into a Fourier series:

w,(£,n) = i f &mn SiNa@ € sinByym ¢G.11n

me=1 aw=l
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Equation (5.1.9) is now substituted into Equation (5.1.5), and the result is
substituted, with Equations (5.1.8) and (5.1.11), into Equation (5.1.4) to give the
following equetion for the amplitudes W, of the normai modes:

4

EWD __Im __|w agla  (5.1.12)

Wit [(@2+ 8D - ald + = ——
mn mt Ba m a‘N,f (ag‘_*_pg)z mn

§.1.2 Static Buckling
For static buckling, the inertia terms Wmn are zero and, with finite a,,, the

modal amplitudes W, grow without bound at eigenvalues for which the coefficient
of W, vanishes. Setting the coefficient equal to zero gives for the eigenvalues:

N
F-Q+ %% (5.1.13)
in which
2.2 2)? -2 2 2 )Y )72
Q= mL;r %l nil“lr] - ,”2'_:? + nt;azl [l{'—] (5.1.14)

The static buckling load is the lowest of these eigenvalues. The quantities
L/m and ma/n are the haif-wavelengths of the buckles in the axial and circum-
ferential directions, respectively. Thus, the value of Q that minimizes N, remains
nearly fixed as the shell length is increased; the wavelengths L/m and wa/n stay
nearly the same and m increases to compensate for the increase in L. For long
shells m is therefore large and L/m and hence Q can be treated as _continuous vari-
abies. To find the minimum buckling load, we therefore set d{(N,/D)/dQ = 0,
which yields

1/2
Eh
- | = 5.1.15
Q lazD] ( )
and hence
< 2(EhD)? _ Eh? 1
N, . . s o —3 (5.1.16)

This is the classical static buckling load for thin cylindrical shells. Equations
(5.1.14) and (5.1.15) show that this same eigenvalue results for a large set of criti-
cai wavelength combinations specified by Equation (5.1.15). For symmetric buck-
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ling (accordian fashion, n = 0), the resuiting axial half-wavelength is
g, = L - m Vsh - 1.728Vah (5.1.17)

Mgy (121 - )4

in which » = 0.3 in the numerical result. The general relationship (5.1.15)
between axial and circumferential wavelengths now becomes simply

-1/2
Qo Qx
-E: "E: - ll (5.1.18)

in which ¢, = L/m and 2, = wa/n.

Equation (5.1.18) shows ihat the axial half-wavelength of nonsymmetric
buckling is always greater than the symmetric half-wavelength 2,. As 2,/28,~ 1,
the aspect ratio 24/, approaches intinity. For an aspect ratio of unity, the axial
wavelength is twice the symmetric axial wavelength. To obtain aspect ratios
significantly less than unity, the axial wavelength must be very large. For example,
when the circumferential wavelength is half the axial wavelength, the axial
wavelength is five times its symmetric value.

These wavelength expressions also show one reason why critical loads for thin
cylindrical shells are very sensitive to initial imperfections. For example, with a/h
= 500, Equation (5.1.17) gives a symmetric half-wavelength 2, = 0.077 a. For a
square buckle pattern (unity aspect ratio), the axial and circumferential haif-
wavelengths are 2, = £, = 282 = 0.155 a. The corresponding arc length is Ag =
8.9°. Thus, even a very localized imperfection encompasses a buckle and could
affect the critical load. Furthermore, Equation (5.1.16) shows that the critical load
is inversely proportional to &. A small inward dent would greatly increase a and
hence decrease the critical load for the section of shell near the dent.

A large-deflection analysis by von Kérman, Dunn, and Tsien? shows that,
once buckling has started, the critical load drops even further. Thus, the local
buckling quickly spreads throughout the shell, and equilibrium eventually bifurcates
to a large deflection post-buckled shape. Typically, this shape is a diamond pattern
with an aspect ratio near unity and a half-wavelength several times the value 22, of
the small-deflection theory. Another reason for the sensitivity to imperfections is
the large-deformation nonlinear behavior of the shell even in a fixed buckle pat-
tern. This is discussed further in Section 5.1.7.

Almroth, Holmes, and Brush* performed experiments on carefully prepared
nickel shells that demonstrate this sequence of events. They found that, when
these shells were loaded to about 75% of their experimental buckling loads, a smalil
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perturbation int-oduced by a mouth-blown puff of air or a slight touch of a finger
would cause the shell to b ‘.le suddenly. They took high-speed motion pictures
(8000 frames/s) of such buckling, triggered by an electromagnet to allow timing of
the photography. An example is shown in Figure 5.1. Buckling starts in a local
area and spreads over the shell in a wedge-sheped front. This initial buckling is in a
short-wavelength pattern. Late:, the motion becomes very complex, and the shell
eventually comes to rest in a large-deflection pattern of longer wavelengths, about
twice the wavelength of the initial buckling.

FIGURE 5.1 BUCKLE INITIATION AND PROGRESSION FOR “STATIC" BUCKLING

These shells were 6 inches (152 mm) in diameter with a 0.0036-inch-thick
(91 um) wall. The theoretical small-deflection half-wavelength for unity aspect
ratio buckling is therefore 22, = 2(1.728)(3 % 0.0036)/2 = 0.36 inch (9.1 mm).
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The observed half-wavelengths of the initial buckling ranged from 0.3 to 0.4 inch
(7.6 to 10 mm). By the time the buckles were large enough to be visible, they
were approaching a diamond pattern rather than the rectangula: pattern of Equation
(5.1.8). Nevertheless, the agreement with the theoretical buckie size is significant.

The circumferential arc length of a buckie half-wavelength in the initial pat-
tern is 0.36 inch/3 inch = 0.12 radians. The rise of the shell above a chord span-
ning this length is 3 inch x [1 ~ c0s(0.06)1 = 0.0054 inch (0.137 mm). Similarly,
the rise above a full-wavelength chord is 0.0216 inch (0.55 mm). 1t is apparent that
local imperfections or perturbations much smaller than the wall thickness could
change the radius of curvature enough to substantially reduce the local critical
buckling load.

In the Almroth, Holmes, and Brush tests, critical buckling loads for nine
shells ranged from 45% to 73% of the classical buckling load. Shells with lower
loads were judged before the test to have small but visible imperfections. In tests
reported in the literature on actual prototype shells, not made with the exacting
care in these tests, critical loads typically range from about 20% to 40% of the clas-
sical load. The load sustained in the post-buckled state is about 10% of the classical
buckling load, as in the Almroth, Holmes, and Brush experiments.

5.1.3 Amplification Functions for Dynamic Buckling

We return now to Equation (5.1.12) for dynamic motion. In the limit as L —
%, a, becomes a continuous variable. Because the wavelengths of buckiing are
small compared with the shell circumference, it is convenient to also trea: 8, as a
continuous variable. In the dynamic analysis, W ,,(7) is then denoted by W(a,8,7)
and the subscripts on o and 8 are dropped. We observe further that, from the
static analysis, the shell parameter coefficient in Equation (5.1.2) can be expressed
by

2
ED _ 1ol . s

in which o is the unperturbed axial stress and o, is the axial static buckling stress
from Equation (5.1.16), which gives

Cag ™ T -ﬁﬁ (51.20)
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Equation (5.1.12) for dynamic motion is now written

i + k(a,f)g = a? (5.1.21)

in which

2
- (a2 na_ 24 L|Zal ot
kia,B) (@t + B a’ + 2 (r] @l + )2 (5.1.22)
and
- Wa,B8,7)

gla,8.7) 2, p) (5.1.23)

is the amplification function, which gives the growth of initial imperfections a(a,B)
under a given axial stress o = N,/h.

By proceeding just as for the elastic bar in Section 2.2, we find that the solu-
tion to Equation (5.1.21) subject to initial conditions g(«,8,0) = g(«,8,0) = 0 is

- a? coshpr
s, pn) = s i - o] (5.1.20)
in which

p = L(a§p)|l/1

The hyperbolic form is taken for k(a,8) < 0 and the trigonometric form is taken
for k(a,8) > 0. The equation k(a,8) = 0 gives the static solution.

Figure 5.2 gives example plots of g(«,8,7) for r = 4 and * = 8, The depen-
dence of these amplitudes on the axial wave number a is similar to that in the
buckling bar, exhibiting a pronounced hump of “preferred" modes near a = 1//2.
The circumferential wave number of the most amplified mode is 8 = 0, i.e., a sym-
metric mode, but there is an appreciable bandwidth of amplified modes in both the
axial and circumferential directions.

Comparing the curves for r = 4 and r = 8, we see that as the motion
proceeds, the bandwidth in both directions decreases, tending in the limit to pro-
duce a fixed axial wavelength corresponding to wave number @ = 1/VZ, but
tending toward longer wavelengths in the circumferential direction, ultimately
approaching a simple symmetric pattern corresponding t0 8 = J (i.e, n = 0). If
the imperfections are large enough, however, nonlinear effects would dominate
before the symmetric mode is attainad, producing final buckles with a finite
wavelength ... Joth directions. Buckling of both types was observed in the experi-
ments described in the following text.
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From the definition of k(a,8) in Equation (5.1.22), we see that the normal-
ized amplification curves gl(a.8,7) depend only on the ratio a/o of the applied
axial stress t0 the classical static buckling stress. Larger values give faster growth
and narrower bandwidths, but the general shape of the amplification curves remains
about the same for any ¢/oy > 1. In the next section, it will be shown that the
expected values of the buckle wavelengths sre very nearly proportional to
(D/N,) V2 = ¢/¢V2 where r = h/[12(1 — »2) ]2 and € = o/E is the strain from

the axial thrust.

Figure 5.3 gives plots of the maximum value of g (at the peak of the hump in
Figure 5.2) against time for several values of o/ . As a/h — oo, we see from
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Equation (5.1.20) that o'y = 0, 30 the curve for a/oy = o is that for a buckling
plate (or rectangular bar if the factor | = »? is omitted). For a/a > 2, the time
required for large amplification is only slightly greater than for the plate or bar.

5.1.4 Buckling from Random Imperfections

To compare theory with experiment, it is necessary to assume some form of
imperfections in order to spec:fy a(a,8) and hence to compute W(a,8,7) from
Equation (5.1.23). The experiments on impact buckling of bars described in Sec-
tion 2.2 demonstrated that a good description of the observed buckles was obtained
by assuming imperfeciions in the form of white noise. These allow the buckle
wavelengths to be dictated by the magnitude of the thrust, giving a random scatter
of wavelengths with a mean and standard deviation both inversely proportional to
the square root of the thrust, in agreement with experimental observations. It is
expected that such an assumption will also be reasonable in the present problem.
Thus we assume that a(a,8) are random normal with zero mean and constant vari-
ance over all o and B8 in the amplified band of interest. With this assumption, the

power spectral density of the modal amplitudes W(a,B8,7) is proportional to
g¥a,B8,7).

Having the power spectral density, we can compute the statistics of the buck-
led shape. For the bar, complete statistics of the wavelengths were computed using
a Monte Carlo technique. The simpler problem of determining the mean
wavelengths can be solved analytically and will be undertaken here for the shell.

From Rice’, the expected number of zeros in an interval (s;,s;) of a random
function f = F(s} is

j‘ ds f: HP(f,q;s)dq (5.1.25)

$
where P(f,q; s) is the probability density function for the variables

f = F(s)

q--——

ds

For our problem, we have then that the expected number of .cros in the §-
direction in the interval (0,9 for a specified value of v and 7 is

R = fgdé f HP(w.z; £,n.1)dz (5.1.26)
0 —en

T S i, da At 30 B i ¥
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where ¢ = L(N,/D)"2, and P(w.z; £,7.7) is the probability density function of the
variables

w= wi¢ n,1)

dw

z--———

8¢

and §, n, 7 are carried along as parameters. Since it has been assumed that the ini-
tial imperfections have a Gaussian probability distribution (or, altcrnately, if we
apply the central limit theorem for more general imperfection statistics), then the
final buckled form will also have a Gaussian distribution. Thus, the distritution
function has the form

|
r(pupn— ph

Pw,z; §,9.7) = G

—p Wl + 2u3Wz — py2?

(5.1.27)
2unpn—uh)

X exp

where
py = <wi>
pn = <>
ki ™ <wz>

and < > indicates ensemble average.

The results are simplified if it is assumed that the imperfections and final
buckied form are stationary (in space) so that in place of Equation (5.1.8) we can
write

Wit = 3 T Wor) sinlapé - é,) sin (Bam—8,) (5.1.28)

m=] aw]

where the ¢, and 6, are each uniformly distributed over the interval (0,2w%). With
this assumption, the statistics of the buckled '..m are independent of ¢ and 7,
which we would expect to be justifiable for waves at a sufficient distance from the
ends of the cylinder. In fact, the results of a Monte Carlo computation including
end effects for the bar, which is similar in form to the cylinder, indicate satisfactory
agreement with the stationary process assumption even for the first wave from the
simple support.
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Using Equation (5.1.28), we find that

un = <wi> = [ [ Wia,g,1)dadp
0 0

= ot [ [ g¥a.p,dadp (5.1.292)
0 o0

py = <!> = f f a’W¥Ha,8,7)da dB
0

=o' [ [ a%¥a,.B,1)da dB (5.1.29b)
0 0

piy = <wz> =0 (5.1.29¢)

where
0! = <a¥a,B)> = constant

and the sums have been replaced by integrals.

Making use of x,; = 0 from Equation (5.1.29¢! in Equation (5.1.27) and sub-
stituting the resulting expression into Equation (5.1.26) gives the expected number
of zeros in the length ¢:

1/2
£z (5.1.30)

1

R::.—Q_
mw

The mean wavelength, as measured between alternate zero crossings, is
simply

aj¥a,B,7)da dB

29 M
Ag ™ — 2 | — (5.1.31)
¢ R K22
or, 1., on using Equations (5.1.29),
. 12
| 8¥a.B.)da dB
Ne = 27 — (5.1.32)
f

J
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The mean wavelength in the circumferential direction can similarly be shown to be
. o 12
f f g¥a ,B,7)da dB
2 | =2 (5.1.33)
I

{ B3 a,B,7)da dB

>
]

0

Equations (5.1.32) and (5.1.33) were integrated numerically over the area
0 < a <2 0< 8 < 2ofsignificant amplification, and the results are presented in
Figure 5.4. Figure 5.4(a) shows the variation of A, and A, with 7. Bands have
been drawn that contain the curves for /o in the range from 1.12 t0 4.0. The
narrowness of these bands indicates that the most significant parameters affecting
wavelength are those given in the normalization in Equation (5.1.3).

Also from Figure 5.4(a), we see that the mean axial wavelength increases
only slightly with 7 for 7 > 4 and quickly approaches a "preferred" wavelength. For
ratios of o/o . nearing unity, the preferred wavelength becomes the classical static
wavelength A, = 2V27. The mean circumferential wavelength, however,
increases with 7 without approaching an asymptotic value. Thus, as discussed in
the preceding section, the mean circumferential waveleugths actually observed in
large-deflection buckling will probably depend on the magnitude of the initial
imperfections, which determines the duration for which this small-deflection theory
is applicable. Smaller imperfections can grow for a longer time. and from Figure
5.4(a), we would expect to see longer circumferential wavelengths.

Figure 5.4(b) gives a plot of the aspect ratio A,/A¢. If nonlinear effects begin
to dominate at, say, T = 7, and subsequent buckling proceeds with a fixed pattern
(one would expect a fixed pattern to be established eventually, as confirmed in the
experiments), Figure 5.4.(b) indicates that the aspect ratio would be about 3.3.
This is discussed again in reference to the experiments.

5.1.5 Impact Experiments

A small-deflection linear theory applied to the static buckling of cylindrical
shells under end loads is notoriously inadequate for predicting experimental buck-
ling loads except for very nearly perfect shells. Also, the shells ultimately buckle
into a form very different from the buckling mode of the small-deflection theory.
It is not obvious, then, that the simple linear theory given here should reasonably
predict the large-deflection dynamic buckling of such a shell. It was thought, how-
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ever, that the smali-deflection theory would give promise for the dynamic problem
because, once started ir. the linear theory pattern, the shell would continue to
deform in this pattern and not have time to convert to another pattern. The exper-
iments described here were run simuitaneously with the theoretical investigation to
determine whether such a theory should be pursued at all.

Early experimenters reported only the final shapes (diamond buckles) after
very severe and prolonged buckling and showed high-speed (about 15,000
frames/s) motion pictures, which were nevertheless at a speed too slow to show the
early buckling process. To record the early motion, the experimental arrangement
shown in Figure 5.5 incorporated three unique features:

(1) The shells were free at the end opposite the impact so that the compres-
sive impact stress would have a duration (at the impacted end), at most,
equal to the transit time 2L/c of the longitudinal stress wave up and
down the shell. This allowed terminal observation of early permanent
buckling nc: obliterated by later folding.

(2) The impacted end was bonded with epoxy cement to a relatively massive
inside ring and to a thin outside ring to provide a clamped boundary to
the shell. Without these rings, severe crimping at the end rapidly
lowerzd the thrust and made comparison with theory impossible.

(3) The massive end ring was accelerated explosively so that the time and
simultaneity of impact could be controlied to within about 2 us. This
allowed the use of a Beckman-Whitley framing camera running at
240,000 frames/s, fast enough to see the details of early wave
formation.

Test shells were made from 0.0027-inch-thick (69 um) 5052-H19 aluminum
sheet rolled to a 3-inch (76-mm) diameter with a lapped seam held with cloth tape.
The steei ring at the lower end of each shell served as the "impacting" mass and
weighed 12 times the weight of the shell so that its change in velocity during the
impact, and hence the change in impact stress, was small. The ring was accelerated
by placing it on the heavy steel anvil bar and detonating a sheet explosive charge on
the opposite end of the anvil. The explosive sent a step-fronted shock into the
anvil. This shock entered the ring and bounced it off in much the same way as end
pellets are bounced from a Hopkinson bar. The pressure gradient behind the shock
was shallow enough that the reverberating stresses in the ring were small, so to a
good approximation the ring was stress-free when it "impacted” the cylinder. To
ensure good transmission of the shock from the anvil to the ring, the contact sur-
faces were lapped.

The ring velocity from various thicknesses of sheet explosive was determined
in a separate series of experiments. Since the ring is very massive compared with
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the shell, the impact stress in the shell is assumed to be pcv, where pc is the acous-
tic impedance of aluminum shell and v is the velocity of the steel ring. The axial
strain corresponding to this stress is

e = P& . Y
E c

where ¢ is the axial wave speed in the shell.

Figure 1.3 shows a sequence of framing camera pictures taken in an experi-
ment in which v = 340 inch/s (8600 mm/s), which, with ¢ = 200,000 inch/s (5
mm/us), gives € = 0.0017. Substituting a’h = 1.50/0.0027 = 555 into Equation
(5.1.20) yields €, = 0.00109 so that e/e,, = 1.56. Thus the impact stress is 1.56
times the classical static buckling stress. Only alternate frames from the original
tecord are shown, giving 8.33 us between frames. Exposure time was about 1.4 us
per frame.

Normalized time 7 can be computed from Equation (5.1.3), which yields v =
(ce/r)t = 0.38t, with t in us. On the original record, very tiny displacements could
be discerned at t = 7 us (+ = 2.6). Att = 11.2 us (r = 4.2) in Figure 1.3, small
wrinkles near the bottom of the shell are clearly visible. By t = 27.8 us (1 =
10.6), these wrinkles are definitely taking on the diamond pattern, indicating that
nonlinear effects are predominating.

Thus, from 7 = 2.6 to v = 10.6, the displacements grow from being just visi-
ble to amplitudes so large that nonlinear effects dominate. This agrees very well
with the period of first rapid growth given by the theory. From Figure 5.3 at a/c
= 1.5, we see that the amplification grows from g,,x = 3 at = = 2.6 t0 g, = 100
at 7 = 10.6. It is probable, as discussed later, that nonlinear effects begin to dom-
inate at an intermediate time of about 7 = 7.

At frame t = 27.8 us, the beginning of buckling farther up the shell is evi-
dent. In the following frames, these buckles stay fixed in position and grow in
amplitude. Other buckles appear at areas in between, at which initial imperfections
were probably smaller. The tiny ripples just above the buckles at the lower end
characteristically appeared in all the experiments. They are most visible at
t = 44.5 us.

To compare the wavelengths in Figure 1.3 with theory, the expected value of
the axial wavelength is determined by substituting A, = 8.9 from Figure 5.4 into
Equation (5.1.3), which yields

D /2 r r
Ay = [_N_xl e = pez] Ae = 8.9-6—-‘5 (5.1.39)
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With € = 0.0017 and h = 0.0027 inch (0.069 mm), this gives A, = 0.18 inch (4.6
mm). From Figure 1.3, the average length from 15 waves is A, = 0.20 inch (5.1
mm), only 10% greater than the theoretical mean.

The permanent buckles remaining in several shells after impact are shown in
Figure 5.6. By comparison with Figure 1.3, it is eviden: that most of the buckling
observed in Figure 1.3 is elastic. In general, most of the permanent buckles were
confined to the area closest to the impacted end. The most striking feature of these
buckles is their very small size and large aspect ratio as compared with static buck-
les. Figure 5.7 shows a statically buckled shell of the same material, wall thickness,
and diameter as those in Figures 1.3 and 5.6. The aspect ratio of these buckles is
near unity, and the wavelength is about 1.3 inch (33 mm), seven times the axial
wavelength of the dynamic buckles.

The dynamic buckles in Figure 5.6 have a mean aspect ratio of 3.3 and axial
wavelengths of 0.18 inch (4.6 mm). Several shells are shown to illustrate the range
of observed aspect ratio. There is little doubt that the shape of the permanent
buckles was strongly influenced by large elastic and plastic deformation, but it is
significant that the large aspect ratio is suggested by the linear theory of the preced-
ing sections.

Circumferential wavelengths from these and two other shells are summarized
in Figure 5.8. Aspect ratio is plotted rather than wavelength to emphasize the
difference between these buckled forms and static buckles. The values range from
2.2 to 7.1 with a mean of 3.3. These are much larger than the static ratio of about
1. It is difficult to compare these wavelengths with the linear theory becsuse, as
shown in Figure 5.4, the theoretical wavelengths continually increase with time.
However, from Figure 5.4(b), the ratio of the theoretical average circumferential
wavelength to the average axial wavelength is 3 3 at 7 = 7. Also, the photographs
in Figure 1.3 show that this is about the time at which the buckle amplitudes first
become distinct.

5.1.6 Formula for Threshold Buckling

The value 7 = 7 corresponds to a peak amplification of gy, ™= 25 for o/o
= 1.5, obtained from the curve in Figure 5.3. Thus, as in the buckling of shells
under lateral pressure in Chapter 3, a critical condition for buckling can be taken as
an amplification near this value. Figure 5.3 also shows that for o/ ranging from
1.12 to infinity, the value of 7 for gm. ™ 25 ranges only from 6 to 8. Threshold
buckling can therefore be calculated with the critical condition 7 = 7, which, from
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FIGURE 5.6 PERMANENT BUCKLES FIGURE 5.8 HISTOGRAM OF OBSERVED
FROM AXIAL IMPACT ASPECT RATINS
{opposite end was free)

Equation (5.1.3) gives the formula

N,t = 7(phD)"?

or

gut = -Z——— pch = 2pch (5.1.35)
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This is the same formula as for a bar of thickness h except here c2 = E/p(1 — »?)
rather than E/p, as can be confirmed by comparison with Equation (2.2.28), with r
= 7and r = h/+/12. The only significant difference is that, for the cylindrical
shell, buckling will not occur unless o is greater than the static buckling stress.
The curves in Figure 5.3 show that - does not have to be much greater than the
static buckling stress, since the curves rapidly approach the curve a/ay — oo for
the bar as o increases.

Because of the extreme sensitivity of the cylindrical shell to initial imperfec-
tions, this stipulation on o should be applied to the local static buckling stress, not
to the classical buckling stress of the perfect shell as given by Equation (5.1.20).
The experiments of Almroth, Holmes, and Brush* described in Section 5.1.2
demonstrate why this is so. In experiments of the type in Figure 5.1, the axial
stress ranged from about 35% to 60% of o, for the perfect shell, and yet the shells
buckled dynamically in a manner similar to that shown in Figure 1.3. The
difference is that the buckling in Figure 5.1 propagates outward from a local region
rather than appearing nearly simuitaneously throughout the shell as in Figure 1.3.
As discussed in Section 5.1.2, this behavior is attributed to the local classical buck-
ling stress in the Figure 5.1 shell being about half that of the perfect shell. The
theory here can be applied if this reduction is caused by small imperfections
increasing the local radius of curvature to twice that of the perfect shell.

In any event, Equation (5.1.35) is conservative because it is essentially the
same result as for a long plate, for which a — oo, It provides a conservative esti-
mate for leading in which ¢ > o,, where o is the static buckling stress of the
imperfect shell. For smaller o, it is not applicable and gives unduly conservative
results. These values correspond to large t, so loading is essentially a step to a
stress that is maintained indefinitely. Critical loads in this range are discussed in
the next section.

5.1.7 Dynamic Buckling Under Step Loads

In addition to increasing the local radius of curvature, imperfections trigger
buckling because of their contribution to the modal imperfection coefficients a,, in
Equation (5.1.11). When these imperfections are coupled with the nonlinear
behavior of the shell for large deflections, the result can be . decrease in the
dynamic buckling load below the static buckling load of even the imperfect shell.
This occurs when the load is suddenly applied and then maintained for a long time,
as in a step load. In this section we present the essentials of Budiansky and
Hutchinson’s theory for such buckling.!$
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Their theory makes use of the simpie one-degree-of-freedom model for
nonlinear buckling used by von Kérman, Dunn, and Tsien.®> This model is the
three-hinge, rigid-rod column shown in rigure 5.9. The spring is taken as a cubic-
softening spring havinn the force-displacement characteristic

F=KL{E=-bE), b>0 (5.1.36)

in which § = x/L, with x measured from an unloaded initial position X as shown in
the figsure.

MA-7504-34

FIGURE 5.9 SINGLE-UDEGREE-OF-FREEDOM RIGID-ROD
COLUMN WITH IMPERFECTION AND
NONLINEAR SPRING

For small rotations, static equilibrium relates P and the displacement ¢ by

(1 ~ P/Pc)E — b = (P/P)E C (513D




[

s it 5

3ol

in which Pc = KL. This terminology for KL follows from the limiting behavior of
the perfect column (¢ = 0), for which the load can increase to Pc without
deflection but cannot exceed Pc. The graph of Equation (5.1.37) for £ = 0 in
Figure 5.10 shows that the equilibrium load for a finite deflection is less than Pc,
and the load continues to decrease with increasing deflection §. Thus, motion is
unstable and ® is the buckling load for the perfect column.

| Load P

£ = 0 (perfect)

E > 0 (imperfect)

Deftlection ¢
MA-7504-35

FIGURE 5.10 LOAD-DEFLECTION CURVES FOR RIGID-ROD
COLUMN WITH CUBIC SOFTENING SPRING

The imperfect cotumn (£ # 0) begins to deflect as soon as the load begins to
increase and hence the column has a range of stable equilibrium. As the graph in
Figure 5.10 shows, the Aeflecticn curve eventually has a horizontal tangent and
iuriher deilection is uastable. Furthermore, the buckling lvad, Pg, at this tangent
point is iess than that of the perfect column.

This behavior represents the essentials of static axial buckling of a cylindrical
ihell (and other imperfection-sensitive structures). The load P represents the clas-
sical buckling load of the perfect shell, and Pg represents the actual static buckling
load of the imperfect shell. The details for the shell are much more complicated, as
we have seen. For example, the rigid-rod column model does not gccount directly
for the dec:ease in buckling load simply becaust an imperfection can increase the
radius of curvature over a buckle wavelength. Also, as shown in Figure 5.1, the
mode of final buckling for a step load is different from the mode in the initial
motion, sc a single-degree-of-freedom model is an oversimplification. Neverthe-
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less, by making the spring and :mperfection parameters b and ¢ large enough (in
fact, simply the parameter bé2, as we will see}, we can make the buckling reduc-
tion iactor Ps/Pc low enough to account for the cumulative effect of several types
of imperfection.

Budiansky and Hutchinson's idea was to see whether these difficulties in static
buckiing analysis can be circumvented for dynamic buckiing analysis by taking
Ps/Pc as known. Their objective was to express the dynamic buckling load by an
expression beiween Pp/Pg and Pg/P, with no explicit reference to the shell
imperfections. Then the study of imperfections can be confined to the static prob-
lem, which is simpler both theoretically and experimentally. It turns out that such
expressions can indeed be found.

To find Pg, z = £/£ is introduced into Equation (5.1.37) to obtain
(1 - P/Pc)z — (bEN2® = P/P, (5.1.38)

from which it is evident that Pg/Pc depends only on bé2. Setting dP/dz = 0 yields
the desired equation for Pc/Pc:

(1 = Pg/P)¥? = 37‘/1 b2 (Ps/PQ (5.1.39)

To find Pp, consider a time-dependent ioad P(t) and introduce inertia into
the system by a mass M at the central hinge. Then Equation (5.1.38) becomes

i+ (1 — P/Pc)z — (BENZ = P/P¢ (5.1.40)
in which the dot indicates differentiation with respect to tvK/M. For step loading,

z=2=0att = 0. Then, with the identity Z = 2zdz/dz, the equation can be
integrated once to obtain

22 + (1 — P/Po)2? - %(BE’)z‘ = 2(P/P¢) 2 (5.1.41)

At loads below the dynamic buckling load, the steady-state motion is periodic and
Equation (5.1.41) defines its limit cycle in phase space z, . The maximum value,
Zmax» Of this limit cycle occurs when z = 0, which gives

(1 — PP 22y — S (BED 28,y = 2(P/Pe) zgmay (5.1.42)
2

The critical dynamic load, Pp, is defined as the load for which the amplitude (and
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period) of this limit cycle is infinite, so the motion diverges rather than approuching
a limit cycle. This occurs under the condition dP/dz,,,, = 0 applied to Equation
(5.1.42), with the result

(1 = Pp/P)¥2 = 3—2{6— bY2€ (Pp/Pc) (5.1.43)

The key feature of this simple model is that the imperfection parameter b’
can be eliminated between Equations (5.1.39) and (5.1.43), giving the desired rela-
tionship between the static and dynamic loads with no explicit dependence on the
imperfections. The result is

P — Pn )2
Pp/Ps = -‘{3 l-‘,—cc-—_-—l;!s’-l (5.1.44)

This function is plotted in Figure 5.11 (solid curve) along with a similar resuit
(dashed curve) for a quadratic-softening spring. which by an analogous derivation
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MA-7004-38

FIGURE 5.11 DYNAMIC BUCKLING LOADS FOR RIGID~
ROD COLUMN MODELS
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gives the expression

Pc - Pp )}
3 —i———"-l (5.1.45)

Po/Ps = TIPC - Ps

The two curves give essentially the same result, within the accuracy of an assumed
single-degree-of-freedom representation of the actual complex buckling process. As
the static buckling load becomes a smaller fraction of the buckling load of the per-
fect structure (as Pg/Pc = 0), the dynamic Inad also becomes a smaller fraction of
the imperfect structure static buckling load. However, no matter how small Pg/Pc
is, the further reduction because of dynamics is never below v2/2 = 0.707 for the
cubic spring and 3/4 = 0.75 for the quadratic spring.

Budiansky and Hutchinson derived an analogous expression for the cylindrical
shell under sudden axial compression. They used the Donnell equations as in Sec-
tion 5.1.1 here, but with the addition of second-order terms to introduce the non-
linear effects of large deformations. Motion was assumed to take place with two
degrees of freedom, one being §, in the symmetric pattern with axial wavelength
2¢,, and the other being £, in the square nonsymmetric patiern with axial and cir-
cumferential wavelengths each 4¢,. These modes and wavelengths are as described
in Section 5.1.2.

Curves of the type shown in Figure 5.11 were found by numerical integration
of the coupled dynamic equations of motion for §, and §; and are repeated here in
Figure 5.12. For initial imperfections with ratio £,/€; = 2, there is very little
reduction in dynamic load below the static bucklini_log_d. When imperfections are
taken to be entirely in the nonsymmetric load, i.e., §,/€; = 0, they find an explicit
solution by the same method used to solve Equation (5.1.40), with the result

Pc ~ Ppl?

This is the same result as for the quadratic-softening spring, in Equation (5.1.45),
but with the coefficient v2/2 found for the cubic-softening spring in Equation
(5.1.44).

The resulting curve in Figure 5.12 is nearly the same as the solid curve in
Figure 5.11 for the cubic-softening spring. The curves in Figure 5.12 show thai the
dynamic load reduction is greater for imperfections in the nonsymmetric mode than
for imperfections in the symmetric mode. For prudent design, the curve for non-
symmetric imperfections is therefore recommended. Furthermore, comparison of
Figures 5.11 and 5.12 shows that the simple rigid-rod column model in Figure 5.9
with a cubic-softening spring gives a good representation of the celculated dynamic
buckling in the shell.
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FIGURE 6.12 DYNAMIC BUCKLING LOADS FOR AXIAL
STEP LOAD ON CYLINDRICAL SHELL

Budiansky and Hutchinson integrated the equations of motion for the rigid-
rod column model for rectangular and triangular loading pulses of finite duration.®
Their results for the rectangular pulse are summarized in Figure 5.13, in which T,
= 2w/w is the free vibration period of the unloaded structure. For the rigid-rod
column, w = VK/M, but the comparison above for the cylindrical shell suggested
that Figure 5.13 could be applied more generally. The curves in Figure 5.13 are for
the limiting case in which Pg/Pc — 0 and give a generalization of the conservative
result in Figure 5.10 at P5/Pc = 0. Since typically Ps/P¢ = 0.25, the curves refer
to practical cases of interest.

For the cylindrical shell, the natural g_eriod of the square nonsymmetric tuck-
ling mode, from Equation (5.1.12) with N, — G and L/m = wa/n = 4¢, from
Equation (5.1.17), is

T, = 2n/wy = 22 - ma/c (5.1.47)
To obtain a simple formula for critical louds in which T,/T > 3, observe that in

this range the curves in Figure 5.13 are nearly straight lines that project from the
origin. For the cubic model in this range, this line is Pp/Pg = T,/3T. With T,

B R

XS T

s A AL ) A i




306
S l l T T T
4 -
3 -
(72}

&o Quadratic Spring

Q.
2 Cubic Spring -

1 —
o | 1 ! ! !
0 2 4 6 8 10 12
To/T
MA-7504-38

FIGURE 5.13 DYNAMIC BUCKLING LOADS FOR RIGID-ROD
COLUMN UNDER RECTANGULAR PULSES
(FOR P /P_ - 0)

from Equation (5.1.47) and o = Eh/av3(1 — ), this gives for the critical
dynamic axial stress

or

If one uses the symmetric mode period T, == 2 ma/c, from Equation (5.1.12)
withn = 0, L/m = ¢,, the same formula results but with a more conservative
coefficient, namely, 1.710/2 = 0.855.

Equation (5.1.48) has the same form as opT = 2 pch, given as Equation
(5.1.35) in Section 5.1.6 and found by using a critical amplification buckling cri-
terion. However, Equation (5.1.48) contains the static load reduction factor
ag/oc, which is typically near .25 in common shells. With this value, Equation
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(5.1.48) becomes opT = U.43 pch. The corresponding equation for the symmetric
mode becomes o T = 0.21 pch. The response mode for this last equation is close
to the critical mode found in Section 5.1.6; the aspect ratio of the most amplified
mode is about €,/8, = 3 [see Figure 5.4(b) for r = 7] and ¢,/V2 < & < €,
gepending on op.

Thus, for common shells, the critical load estimated by Equation (5.1.48) is a
factor of 10 lower than the critical load given by Equation (5.1.35) derived with a
critical amplification criterion. The value of 7 corresponding to opT = 0.21 pch is
t = 0.7, which from Figure 5.3 gives virtually no amplification. Furthermore, as
pointed out in Section 5.1.6, the formula opT = 2pch is also the critical load for-
mula for a bar, or plate, which corresponds to a —* o. Thus, there is no reason to
suspect that the critical amplification formula is unconservative because of any
peculiarity of complex nonlinear shell response; the finite radius of the shell makes
the shell stronger than the plate.

For pulse loads, it therefore seems more recasonable to use the critical
amplification criterion and not express the dynamic buckling load in terms of the
imperfect shell static buckling load. Thus, in place of Figure 5.13, we suggest use
of the plot in Figure 5.14. For large P /Ps, the plot is the straight line

S | T T ! T
4 p—
3
v
[~ 9
S PoT = 2pch
o o (Critical amplification
2 criterion, g = 25) —
Pp/Pg = 0.70 e
(Nonlinear Model)
1 —
0 | ] ] 1 |
0 1 2 3 4 5 6
ToPC/TPS
MA-7504-39

FIGURE 6.14 DYNAMIC BUCKLING LOADS FOR CYLINDRICAL
SHELL UNDER RECTANGULAR PULSE LOADS OF
DURATION T (FREE VIBRATION PERIOD OF
SYMMETRIC BUCKLING LOAD IS T )
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Pp _ 6 |Tol|Pc
P, - [T"PS] (5.1.49)

which is Equation (5.1.35) with T taken as the free vibration period v2 ma/c of the
symmetric buckling mode. This formula is taken to hold for Py greater than the
reduced buckling load Pp/Ps = /2/2 given by Equation (5.1.46) for Pg/Pc — 0.
For longer pulse durations (smaller T,/T), this straight line is terminated and the
critical load is taken as the conservative value Pp/Ps = +/2/2 from the step-load
theory. For common shells in which Pg/Pc = 0.25, the corner of the resulting
plot in Figure 5.12 occurs at a pulse duration T = 4T,. For a one-meter-diameter
shell, T = 42 (1 m)/5000 m/s = 0.00355 s.

5.2 AXIAL PLASTIC FLOW BUCKLING OF CYLINDRICAL SHELLS’
5.2.1 Introduction

Cylindrical shells with low radius-to-thickness ratios buckle axisymmetrically
when subjected to axial impact at velocities sufficient to cause moderate plastic
strains. Figure 5.15 shows this flow buckling in the final axisymmetric shapes of
tubes of 6061-T6 aluminum alloy, which before impact (left-hand tube) were 4
inches long (102 mm), 1 inch outside diameter (25 mm), and 1/10 inch (2.5 mm)
thick (radius/thickness = §). Each of the three plastically deformed tubes was
impacted at 342 ft/s (104 m/s); the shortening in each case is 0.55 inch, giving an
average longitudinal strain of about 14%. The wavelengths are fairly uniform along
the length of each tube, and they are reproducible.

In the development of the theory, it is assumed that during deformation the
shell is contained between a flat rigid target and a heavy mass that approaches the
target as depicted in Figure 5.16. Solution of the governing equation is given for
the case of a constant mass velocity to provide simple formulas for the preferred
mode and for numerical comparisons with experimental results. Justification for
assuming a constant velocity is based on high-speed camera observations of several
impacting tubes. It was observed that the mode of buckling was selected early in
the deformation process. We also assume that unperturbed motion has the diame-
ter and the wall thickness increasing at a rate proportional to the rate of tube shor-
tening. The buckling is treated as a perturbation of this motion stemming from
axisymmetric imperfections of the uniform initial radial displacements and
velocities
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MP-7504-17 ,
FIGURE 5.15 PLASTICALLY BUCKLED TUBES CAUSED a
BY AXIAL IMPACT (Tubes 13, 14, & 15)
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FIGURE 6.18 TUBE COMPRESSED BETWEEN RIGID WALL AND RIGID MASS

It is supposed that the strain rates associated with the unperturbed motion
dominate the strain rates introduced by the perturbed motion so that no strain-rate
reversal occurs until the buckling is well developed. This supposition ensures that
the stress states at every material point remain on the yield surface and therefore
have associated strain-rate vectors as outward normals to the yield surface at the
stress state The yielding criterion is that of von Mises and the strain hardening is
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isotropic. To keep the theory simple, the strain hardening portion of the stress-
strain curve from static compression tests is approximated by a straight line. The
static data for 6061-T6 and 2024-T3 aluminum alloys, the materials used in the
impact experiments, are satisfactory because the stress-sirain curves for these
materials are insensitive to strain rate. Finally, elastic strains are neglected and the
materials are regardeq as incompressible.

5.2.2 Unperturbed Motion

Figure 5.16 shows a cylindrical shell of length L, mean radius a, and thickness
h, about to undergo compression between a rigid slab and a rigid ‘cavy mass,
which initially approaches the slab with a velocity V. The inward di:;:acement of
the midsurface during the ensuing unperturbed motion is wg(t), assumed to be
independent of the length coordinate x. The outward radial coordinate measured
from the midsurface is 2. We again adopt the plasticity Equations (4.1.1) through
(4.1.10).

On the midsurface the axial and circumferential strains are
& = —-V/L €p = —Wp/a (5.2.1)

where V = V(1) is the current mass velocity. Our assumption that these strain
components are proportional to one another may be expressed as

ép = — ke, (5.2.2)

where k is the proportionality constant to be determined. If we neglect the effect of
strain hardening on the unperturbed motion we may set o =—g, in (4.1.9), the
relations giving the stresses in terms of the strain rates. Then, after substituting
(5.2.2) in (4.1.9), making use of (4.1.6) for the generalized strain rate, we obtain
the constant midsurface stresses

o = 1 -2 - Koy o = - 2k - Doy
) [3(1 -k + kz)]”2 ’ [3(1 -k + k’)]

The equations governing the motion of the rigid mass, of magnitude M, and
the tube expansion, are

MV = 27sho, , pawg = o, (5.2.4)

in which the stresses are the midsurface values (5.2.3). Integration of Equations
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(5.2.4) to obtain velocities, use of the relation wg/a = — kV/L from (5.2.1) and
(5.2.2), and substitution of the stress formulas (5.2.3) show that k must satisfy the
quadratic equation

2k - 1)/ - Kk = ma?/ML? (5.2.5)

where m = 2mwahLp is the mass of the shell. The right-hand side of (5.2.5) is gen-
eraily small enough to allow the solution to be approximated by

k = (1 + ma?/ML?)/2 (5.2.6)

After we substitute (5.2.6) into the stress formulas (5.2.3), we have
o, = —(1 — 2ma?/3MLY) ¢, oo = 2ma?/3MLY) e, (5.2.7)
We proceed by assuming that the right hand side of (5.2.5) is small enough to let k
==, which is the case in the experiments. Thus we have the midsurface stress

values o, = —opand oy = 0.
With k = Y¥: the strain rates are

&, = —V/L €, = (1 - z/a)(V/2L) € = V/L (5.2.8)
and €, is determined by the incompressibility condition (4.1.1). In obtaining the
generalized strain rate in (5.2.8), we neglected powers of (2/a) higher than one.

Substitution of the strain rates (5.2.8) and the approximation ¢ = o4 into the
stress formulas (4.1.9) leads to

o, =~ + z/3a)0, oo = —-2z/3a)ay (5.2.9

A refinement of the approximate generalized stress can be made by letting
o = o, a value averaged over the generalized strain, as was done in Section 4.1

Again with k = Y%, integration of the equation of motion of the mass M,
given by (5.2.4) with o, = — o, gives

V o= Vol - t/tp) tr = (M/m)(LpVy/ op) (5.2.10)

where t; is the duration of motion.
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5.2.3 Perturbed Motion

Let the axisymmetric perturbation of wg(t) be w(x, t) so that the total inward
displacement is wo + w. The strain rates become

€& = —-V/L + z#" € = (1 — z/a)(V/2L — w/a) (5.2.11)
where primes denote partial differentiation with respect to x. In the results that fol-
low, terms with powers of (z/a) higher than one and terms with products of pertur-

bation quantities are neglected. Thus, by substituting (5.2.11, into (4.1.6) we
obtain

€ = V/L + (2w/3a ~ aw")(z/a) (5.212)
which can be integrated to give the generalized strain

e = X/L + [(2/3a)(w - w - alw - \'v)"](z/a) (5.2.13)

where

X = f Vdt (5.2.14)
0

is the mass displacement and W = w(x, 0) are the initial displacement
imperfections.

Substitution of the generalized strain (5.2.13) in the hardening law (4.1.10)
gives the generalized stress

o = oo+ E|Q/3w - %) - atw - |0 219
where we have used the approximation og + E,X/L=a(. Substitution of

(5.2.15) and the strain rates (5.2.11) and (5.2.12) into the stress formulas (4.1.9)
results in

o, = (1 +2wL/3Va)og — [ao(l — 4WL/Va — w"La/V)/3

+ E.,{Z(w ~ W)/3a - a(w — \'v)"l](z/a) (5.2.16)

o = — (4WL/3Va) oy

- (209/3)(1 — 2WL/Va — w"La/V)(2/a) (5.217)
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According to the sign convention of Figure 5.17, stresses (5.2.16) and

(5.2.17) have the following resultant membrane forces and moments

N, = =(1 + 2#L/3Va)aoh
N, = — (4WL/3Va)ogh
M, = [o-o(l — 4WL/Va — W'La/V)

+ E.,[Z(w - w)/a ~ 3a(w - v"v)""(h’/%a)

M, = (1 — 2WL/Va — W"La/V)ay(h3/18a)

phiw, +w)"

7~ MA-7304-18

FIGURE 6.17 UNIT SHELL ELEMENT WITH
FORCES AND MOMENTS

(5.2.18)

(5.2.19)

(5.2.20)

(5.2.21)
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The restoring moment M,, given by (5.2.20), comprises two groups of terms. The
first group is the directional moment that occurs because the stress state on the
yield ellipse is lincarly dependent on the distance z of the fiber from the midsur-
face. The second group is the strain-hardening moment. Also resisting the buck-
ling is the circumferential membrane force (5.2.19).

5.2.4 Governing Equation

With the aid of Figure 5.17, which shows a unit sheil element with its atten-
dant forces and moments, we can derive the following equations of motion or

equilibrium:

Q-M,-Nw =20 (5.2.22)

Q + Ny/a = phw (5.2.23)
The unperturbed displacement wy does not appear in (5.2.22) and (5.2.23) because
w'o = 0 and the unperturbed equation of radial motion (5.2.4) cancels in (5.2.23).
Combining (5.2.22) and (5.2.23) by eliminating the shear force Q and noting that
(N,w')' = N,w" (neglect of product of perturbation terms) gives the equation
M', + Nw" + Ny/a = phw (5.2.24)
Substitution of expressions (5.2.18), (5.2.19), and (5.2.20) in (5.2.24) gives the
governing equation in terms of the perturbed displacements:

(ool / V) (4w + aw") + Ep{3a¥(w — W) — 2(w — \'v)}"](h""/ 36a?)

+aow" + (4agL/3IVa)w + pw =0 (5.2.25)

The four terms, in order, represent effects of longitudinal bending, axial thrust,
hoop force, and inertia.

By letting the radius become infinitely large in (5.2.25), we obtain the
corresponding flat plate equation:

[(ooL/3V)\fv + Eyw - vv)]""(h’/lz) + oW + pW = 0 (5.2.26)

Equation (5.2.26) governs perturbations that are independent of the lateral y coor-
dinate in a plate with the unperturbed stress condition oy = 0. By omitting the
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directional longitudinal bending term in (5.2.26), we obtain the rod equation:

Eh?/12)(w = W)™ + ow" + pWw = 0 (5.2.27)

Equation (5.2.25) governing flow buckling of a tube can be made dimension-
less by the quantities
u = w/a ¢ = x/L T =V, /2L m =1 -7/1;

a® = h?/12a2 B =E,Joq 7y =a/L u = M/m (5.2.28)

so that, with the dots and primes now denoting partial differentiation with respect
to » and § we have

i - (p,/3'n)[a2(4u + yu")" + (4/71)\1].

+2uty -0 (5229

azﬁlyz(u - )" - @2/3) - ﬁ)l + u

In (5.2.29),
Ty ™= Votflzl.. - (pV&/Zoo) (M/m) (5.2.30)
which is the energy equation, where 7 is the final axial strain.

For the case of sustained axial flow caused by the mass M compressing the
tube at a constant velocity V,, let

T = VUL s = oo/pVé (5.2.31)

Then (5.2.25) con be converted into the dimensiontess form
i+ Wadan + v + @y

n

= 0 (5.2.32)

+s aIB{'y’(u - )" - 23)u - ﬁ)} + a

where the dots denote differentiation with respect to r.
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5.2.5 Modal Solutiens

We consider two cases depending on the mass velocity. In the first case, the
mass is brought to rest at constant deceleration according to (5.2.10). The equation

governing the plastic buckling is (5.2.29). In the second case, the mass velocity is
assumed to be constant and the governing equation is (5.2.32).

Let the dimensionless perturbations and initial imperfections be represented

by
u(é,n) = 2. uy(n)sinnwé (5.2.33)
n=1
) = ug,)) = ¥ asinnne (5.2.34)
n=1

and substitute into (5.2.29). Each mode amplitude is then found to be governed by
the equation

i, - Qu./n — R, = S, (5.2.35)
where
Qn = (W/3) e win?(y"n?- 4 + 4/-,’] (5.2.36)
R} = 2ur win? {l - a8 (yi=in? + 2/3)] (5.2.37
S, = 2urralBrini(yirn? + 2/3) (5.2.38)

Equation (5.2.35) has the same form as (4.1.59), which describes the plastic buck-
ling of an imploded shell. Amplification vccurs only when R2 > 0. Formula
(5.2.37) therefore gives the maximum value f of the mode number for which
amplification is possible as

A= laVBynm (5.2.39)

The solution of (5.2.35) is analogous to the solution given by (4.1.65) through
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(4.1.68). In particular, the amplification function for initial displacement imperfec-
tions is

A = 0 [LRK, (R, + K, Rl (R,

x Qurwn?/R,) - S,/R3 (5.2.40)

which is analogous to (4.1.66); again » = (Q, + 1)/2. The terminal value of
the amplification factor is

A0 = purpeln2°TO,_(R)/RET (5.2.41)

which is analogous to (4.1.70). The preferred mode number may be taken as the
value N that maximizes (5.2.41).

In the second case, where we assume that V = V, throughout the axial
compression, we represent the dimensioniess perturbations and initial imperfections
by

u(g,r) = i u(r)sinnwé (5.242)
n=i
u(¢) = (g, 0) = i a,sinnwé (5.2.43)
n=1

Substitution of (5.2.42) and (5.2.43) in (5.2.32) shows that each mode amplitude is
governed by the ecuation

i, + Qu, - RA, = S,a, (5.2.44)
where
Qo = @3 [arnimnt - 4 + 4y} (5.2.45)
R = swin?[l - a8 (ien? + 2/3)] (5.2.46)
Sp = saBrini(yinin® + 2/3) (5.2.47)

Growth of initial imperfections occurs when R2 > 0, a condition that is satisfied
when the mode number is less than Ti, again given approximately by (5.2.39).
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The solution of (5.2.44) satisfying the initial values of displacemeat and
velocity perturbations

u,(0) = a, ua(0) = o, (5.2.48)
is

Un(r) = A (r)a, + B, (7)), (5.2.49)

Ar =OFeM™ - a7eM ) +S/RD /NG~ A7) =S, /R2 (5.2.50)
B, =(e™"—e™)/O}=-2a) (5.2.51)
o= [e@ + DV - Q)2 (5.2.52)

The functions A, and B, given by (5.2.50) and (5.2.51) are the required
amplification functions when the velocity of the mass M is taken as the constant V,,
in the governing Equation (5.2.32), and hence in the modal Equation (5.2.44).
The duration of the sustained axia! plastic flow, however, is calculated by assuming
that the initial velocity decreases linearly with time according to (5.2.10). Investi-
gations that include this variable velocity in the governing equation are made with
formula (5.2.41). The remainder of the analysis in this section treats the velocity
as a constant in the governing equation.

5.2.6 Amplification Functions

We again illustrate the nature of the amplification functions (5.2.50) and
(5.2.51) by an example from a set of experiments in which tubes of 6061-T6 alumi-
num alloy were subjected to axial impact; the experiments are treated in Sections
5.2.9 and 5.2.10. The example is designated tube 20 and has the following data:

midsurface radius a = 0.45inch (1.145 cm)
thickness h = 0.10 inch (0.254 cm)
length L = 40inch (10.16 cm)
density p = 0.097 Ib/in® (2.7 g/cm?)
tube mass m = 2wahLp = 0.1121b (51 )
compressing mass M = 0.2641b(120g)

impact velocity Vo = 411 ft/s (125 m/s)

yield stress a9 = 44,500 psi (307 MPa)

hardening modulus E, 105,000 psi (724 MPa)

e - vy gams
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These data provide the following values for the dimensionless parameters:
al = h¥Y 122l = 0.004115 B =E\/oy= 234 » = a/L 0113
4 =M/m=22353 s = ago/pVy=124 Te = u/2s= 0.162

The value of the last parameter r is a prediction of 16.2% for the final axial strain.
These parameters are substituted into formulas (5.2.45), (5.2.46), and (5.2.47),
leaving only n as the parameter in Q,, R,, and §,. Formulas (5.2.50), (5.2.51),
and (5.2.52) now give the relationship between each amplification function and the

mode number n.

These relationships are shown in Figures 5.18 and 5.19. The development
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MOOE NUMBER — n
MA-7908-20

FIGURE 5.18 AMPLIFICATION FUNCTIONS FROM INITIAL
DISPLACEMENTS (Tube 20 in Table 5.1)

it 1 il ) it T 8T

o A AL ot 4 7




320

50 T T T T T T
7y = 0.162¢
{
40 —
,, 107
3‘0 - °~8 ff ~
o |
2 |
»x 0.6 r'
m:
2ol j ]
/ 04r,
0.2 7,
1.0 , .
0 | ] | ] L |

0 4 8 12 16 20 24 28

MODE NUMBER — n
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FIGURE 5.19 AMPLIFICATION FUNCTIONS FROM INITIAL
VELOCITIES (Tube 20 in Tabie 5.1)

¢

and shape of the curves are typical of plastic flow buckling, the main feature being
the development of a narrow band of harmonics that are eventually amplified much
more than is any other harmonic. The dashed lines through the maxima of each
constant-time curve give a reasonable prediction of the development of the pre-
ferred harmonic.

Figures 5.18 and 5.19 show that the preferred mode is selected during the first
half of the motion. This behavior indicates that the assumption of a uniform veloc-
ity in the governing equation is probably satisfactory for predicting the preferred
mode number.

According to formula (5.2.29), tube 20 has a cutoff mode number of n = 29.
Thus, the preferred mode number N is less than n. Figures 5.18 and 5.19 show
most amplified mode numbers of 15 and 12 stemming from initial displacements
and velocities, respectively. The experimental value was 12.
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£.2.7 Preferred Mode and Critical Velocity Formulas

In many cases of axial impact of tubes, the properties and conditions are such
that Q, >> 2R,and R? > > S, when n is near the preferred mode number N. In
these cases we may approximate the final value of the displacement amplification
function by

Ag(rp) = et (5.2.53)

Differentiating (5.2.53) with respect to n? and equating the result to zero then leads
to

N2 = 2(1 — 2aB)/nly? (5.2.54)

provided we made the reasonable approximations 2a?8/3 and 2aB8y? << 1. In the
example of tube 20 in Section 5.2.6, formula (5.2.54) gives N = 13, which com-
pares favorably with the prediction of N = 15 from (5.2.50). Two physical conse-
quences of the assumptions are that the ratio of the hardening modulus to the yield
stress should not be larg: and that the length should be severa! times the radius. It
is interesting to note that for many practicai cases formula (5.2.54) is independent
of the impact velocity V and does not depend strongly on the hardening parameter
B. This observation is in agreement with the experimental results of Section
5.2.10.

The maximum value of A, is found by substituting in (5.2.53) the preferred
mode number N from (5.2.54), where, according to our approximations,
AT = RY/Q,. The  impact  velocity is  introduced  through
e = 1/ = wupVE/20, (energy equation). This process leads to

Qoy/ puldall — a(l - 2a8)(28 + 1ietnA,

31 — 4a8 + 8a2B2(1 — 2aB)] (5.2.55)

Vi =

where, a, 8, and . are defined in (5.2.28). Formula (5.2.55) may be regarded as a
formula for the critical impact velocity that corresponds to an acceptable
amplification factor. For tube 20, if we take A, = 10 the critical velocity is V, =
535 ft/s (163 m). The experimental impact velocity was 411 ft/s (125 m/s), and it
caused moderately large amplitudes (twice the wall thickness).

Figure 5.20 shows the variation of amplificatior A,{(r) with the impact veloc-
ity Vo for tube 20. One of the two curves shown gives the variation according to
formula (5.2.50), with r = 7, and the other curve gives the variation according to
the explicit formula (5.2.55). The comparison provides confidence in the use of
(5.2.55) for determining critical velocities.
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FIGURE 520 IMPACT VELOCITY-AMPLIFICATION CURVES
FOR TUBE 20
5.2.8 Directional and Hardening Moments

From formula (5.2.20), we see that the directional and hardening contribu-
tions to the restoring moment M, are

M@ = —(g,L/a)(4w/a + w"a) - (h’/36a) (5.2.56)
M® = Eyf2w - #)/a - 3atw — 9| @¥/360 (5.2.57)

If we convert formulas (5.2.56) and (5.2.57) to our dimensionless quantities (u,
& 7,a,8, and y), select the perferred mode N, and compare the relative magni-
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tudes in a time-integrated manner by means of the ratio
A, = j:M;S“’(f)dr/j:M,S‘”(f) dr ‘ (5.2.58)
we obtain the approximate formula
A= daf 30 -2af)+a _1-a28+1)1 - 2aB) (5.2.59)

3 (1-2aB8) —2a 1 -4aB +8a?B¥l ~ 2aB)

In the derivation of (5.2.59), only growth from initial displacement imperfections is
considered and the preferred mode number is assumed to be adequately predicted
by formula (5.2.54). We recall that the strain hardening is represented by the
parameter 8, so the ratio A, tends to zero as E, tends to zero. For tube 20, the
ratio is A, = 1.06, which implies that for the typical experimental tube the contri-
butions of the directional and hardening moments to the restoring moment are
comparable. Comparisons for other tubes can be made by using formula (5.2.59).
The ratio of the time-integrated moments depends only on the parameters a« and 8,
that is, on the radius-to-thickness ratio and the hardening modulus-to-yield stress
ratio.

According to (5.2.54), the preferred mode number increases with decreasing
hardening modulus. If fact, when 8 = 0,

N2 = 2/nla2y? = 443 LY/ n%h (5.2.60)

For tube 20, formula (5.2.60) predicts an increase of the mode number from N =
13, from (5.2.54), to N = 16 as the hardening modulus is reduced to zero.

According to (5.2.535), the relationship between the impact velocity and the
amplification factor when 8 = 0 is

V§ = Qaopw |4att — a)/3fenay (5.2.61)
For tube 20, formula (5.2.61) predicts a critical impact velocity of Vo = 437 ft/s

(133 m/s) based on awaplification factor of Ay = 10, which is a reduction from V,
= 535 ft/s (163 m/s) predicted by (5.2.55).

5.2.9 Description of Experiments

A smooth-bore rifle of 0.46-inch 1.D. (1.17 cm) was used to project the tubes
against a machined and polished flat face of a heavy steel slab 12 inches long and
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12 inches in diameter (30.5 by 30.5 cm). The steel slab and the carriage assembly
for the rifle were supported on the same I-beam, and the rifle barrel was aligned
optically to be perpendicular to the flat face of the slab. The tubes were attached by
adaptor plugs to push rods, as shown in Figure 5.21. Each push rod was a close fit
in the barrel and, just before firing, the end of the rod rested against a cartridge.
After firing, the tube-plug-rod assemblage traveled along aligned Teflon tracks that
ended short of the slab. Installed in the track were accurately spaced electrical con-
tact pins for measuring the tube velocity.

MP-7604-23

FIGURE 5.21 PLASTICALLY BUCKLED TUBES CAUSED BY AXIAL IMPACT
AND TWO PUSH ROD-ADAPTER ASSEMBLIES

Along with the rod-plug assemblies, Figure 5.21 shows a series of 6061-T6
aluminum alloy tubes, originally 4 inches (10.2 cm) long (impacted ends shown
upwards). From such specimens magnified tube profiles of the type shown in Fig-
ure 5.22 were drawn by passing a pointer along a generator, the pointer being an
extension of a linear differential transformer, which sent a signal to activate a
plotter. This device magnified many inperceptible buckles sufficiently to allow
wavelength measurements.

Photographs of six of the tubes were taken during impact using an image con-
verter camera (one photograph per test) to observe the development of plastic
buckling. The technique consisted of performing three identical impact tests and
taking the photograph at a different time in each test.

Static compression tests were performed on six tubes to provide a comparison
of the static and dynamic buckling mode numbers. The ends of the tubes were
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MA-7504-24

FIGURE 5.22 TUBE PROFILES

lubricated to allow expansion along the flat heavy steel plattens of the compression
machine.

Yield stress and strain-hardening values were obtained from bilinear fits of
stress-strain curves from compression tests on 3/8-inch-long (9.5 mm) tube speci-
mens. Again, the ends were lubricated, and little barreling was observed to 10%
strain.

5.2.10 Comparison of Theory and Experiment

Table 5.1 lists the main experimental data. Tubes of 6061-Té or 2024-T3
aluminum alloy of l-inch O.D. (2.54 cm), 0.1 or 0.095 inch thick (0.254 or 0.241
c¢m), and 3, 4, or 6 inches long (7.62, 10.16, or 15.24 cm) were impacted axially at
velocities ranging from 130 to 411 ft/s (40 to 125 m/s). The resulting number of
half-waves, listed in the final column were obtained from the magnified profiles,
examples of which are shown in Figure 5.22.

Table 5.2 lists the preferred mode numbers predicted in three ways, all assum-
ing a constant velocity in the governing equation. The first column of mode
numbers headed A ,(7), was obtained by substituting 7 into formula (5.2.50) and
numerically finding the value of n that maximized the amplification function. The
second column of mode numbers, headed B, (7;), was obtained similarly using for-
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Table §.t
EXPERIMENTAL DATA FOR TUBES

Rod-Plug Tube Length  Velucity Shoriening  Strain

Tube Tube Weight (M) Weighd (m) L v, X X/L
Material Number (grams) (grams) (cm) (m/s} (cm) %)
1,23 27 3% 1.62 101 1.283 68

4. [ 36 1.62 10t 1397 183

5. 120 s1 10.16 53 0.437 44

6_ 120 51 10.16 ] 0.516 52

7 120 51 10.16 6 0.63S 43

Aluminum 8 10 49 10.1¢ i ] 083 33
9. 120 51 10.18 87 0914 9.2

6061-Té IO. 120 St 10.16 n 0.965 9.5
ll. 120 51 10.16 » 1199 L1 R4

12 120 51 10.16 100 1194 1.9

lJJ‘.IS [Py a4 10.16 104 t.397 (KR ]

M. 120 M 10.16 \15 1575 155

I'I. 120 51 10.16 120 LN 17.2

|l. 120 51 10.16 121 1.740 174

IQ. 120 51 10.16 122 1.803 18

20 120 51 10.16 125 1.981 195

b1 30 7 15.24 L] 0s18 34

n 300 76 15.24 73 1.549 10.2

Pilel ] 300 76 15.24 ™" 2235 (LX)

Aluminum 25 127 51 10.16 1 1.143 13
2024-T) 26 127 L] 10.16 "W 1.041 10.3
b3 127 5t 10.16 1" 1194 1"ns

* Tubes of thickness 0.284 cm 0.1 in.) {a/h = 4.50); remaining tubes of thickness 0.241 ¢cm (0.095 in.) (azh = 4.76).

Y Insufficient growth of buckling for measurement.

Table 5.1 (concuded)
EXPERIMENTAL DATA FOR TUBES

Rod-Plug Tube Length  Velocity Shoriening  Susin

Tube Tube Weight (M) Weight {m) L v, X X/

Materisi Number {grams) {grams) (inches) (fvs) {inches) (%)

1.23 P 3% 3 k3 H 0.50S 168

4 127 3% 3 i 0.550 183

5, 120 51 L} 178 0172 44

6, 120 51 4 190 0.203 5.2

7 120 S1 4 W3 0.250 6)

! Aluminum 8, 120 49 ] 256 0.32% | &)
¢ 9. 120 b 4 288 0.360 9.2
X 6061-T6 10, 120 51 4 m 0.380 9.5
i 1\ . 120 5N 4 Ry} 0.468 n?
12 120 5 4 mn 0470 19
B 13,1418 n [ ] 4 k1 H 0.5%0 133
16, 120 ] 4 n 0.620 18.§
: 17 120 st 4 398 0.680 1.2
H 18 120 ] 4 w 0.68% 174
! 19, 120 1 4 400 0.710 178
: 0 120 L] 4 41 0.7 198
2 300 7 6 (1] 0.204 34

2 300 7% 6 b1 0.610 10.2

23,24 300 % 6 o 0.880 147

Aluminum 28 (b3 ] 4 k1 4 0.450 (1]

2024-1) % 127 ] 4 k1] 0.410 103

n (k1] 5t 4 k' 040 (1R ]

* Tubes of thickness 0.1 in. ta/h = 4.50); remaining tubes of thickness 0.093 in. (a/h = 4.76),
{ insuficient growih of buckling for measurement.

Half-waves

HaN-waves

v

o

wr

e et M B s 5 il P K




k¥ Y]

Table 5.2

THEORETICAL AND EXPERIMENTAL MODE NUMBERS

Preferred Mode Number N
Tube Tube St;a,m Formula Experiment

Material Number (%) A,(ry) Bp(rg) (5.2.54) N
1,2,3,4 15.89 11 9 10 8
5 294 15 9 13 12 ;

6 3.47 15 9 13 12
7 416 15 9 13 12 ,
8 6.56 16 11 13 12 :
Aluminum 9 7.18 15 11 13 12 :
6061-T6 10 7.98 15 11 13 12 i
11 10.09 15 11 13 12 ]
12 10.28 15 11 13 12 |

13,14,15 12,65 15 12 14 12

16 13.74 15 12 13 11

17 15.00 1S 12 13 11

18 15.16 15 12 13 12

19 15.38 15 12 13 11

20 16.24 15 12 13 12

21 2.73 24 13 21 -

22 9.76 23 17 21 14

23,24 15.50 23 18 21 15

2024-T3 25,26,27 12,67 14 11 10 11
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mula (5.2.51). The third column of mode numbers, headed 'Formula,” was
obtained by (5.2.54), which was derived from formula (5.2.50) with 7 = 7 under
the conditions Q, >> 2R, and R2 >> S, for n near the preferred number N.
The experimental values are listed in the final column. Overall, the predictions are
satisfactory, esp=cially when they are based on initial velocity imperfections.

In Figure 5.23 there are six photographs of six different tubes taken during
impact with an image converter camera. Figures 5.23 (a, b, ¢) are photographs of
the identical tubes 13, 14, and 15 taken 65, 100, and 150 us after impact, which
occurred at a velocity of 342 ft/s (104 m/s). The longitudinal strains at these times
were approximately 5.9%, 7.9%, and 10.5% compared with 5.5%, 7.8%, and 10.3%
calculated by assuming a constant force resisting the rod and plug. At 65 us, the
preferred mode of buckling is under way. At this time the longitudinal strain is
5.9% and since the final strain is r; = 13.75%, the preferred mode is evident at
about 0.4 7.

MP-7504-25

FIGURE 523 IMAGE CONVERTER CAMERA PHOTOGRAPHS OF TUBE IMPACT;
{a), (b), and {c) are tubes 13, 14, and 15;
{d), (&), and (f) are tubes 1, 2, and 3.
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A similar behavior is seen in Figures 5.23 (c, d, e) for the identical tubes 1,
2, and 3 subjected to an impact of 332 ft/s (101 m/s). Again, the measured and
calculated longitudincl strains agree assurning a constant resistive force. At 65 us
the preferred buckling is under way. The longitudinal strain is 7.2%, and since the
final strain is 16.83%, the preferred mode is evident at about 0.4 r,. In both cases
the mode numbers observed in Figure 5.23 are the same as those obtained from
the final profiles of the type shown in Figure 5.22.

If we examine Figures 5.18 and 5.19 showing the amplification spectra at fixed
times or longitudinal strains, we see that the theory predicts a preferred mode
number at about 0.4 7, with little change thereafter (dashed lines in the figures),
which is in agreement with the photographic observation. This resuit and the gen-
eral overall agreement of the experimental and theoretical mode numbers suggest
that the assumption of a constant axicl velocity is reasonable for predicting mode
numbers.

Measurements of radius and thickness increases on several tubes showed that
final average hoop and radial strains were within a few percent < each other. This
observation reinforces our assumption of Section 5.2.2 that our strain rate propor-
tionality constant may be taken as k = 1.

5.2.11 Slow Buckling

When the impact velocity Vg is small, the inertia terms in Equations (5.2.44)
governing the amplitudes u, can be neglected to give

Q, — R, = S, 1, (5.2.62)

where the coefficients are given by (5.2.45), (5.2.46), and (5.2.47). For the case of
initial displacement imperfections unly, the solution of (5.2.62) is

U(r) = Ap(r)a, = [(1 + S, /Rt W s,./Rg]a,, (5.2.63)

Growth of initial imperfections occurs when R2 > 0, a condition that is satisfied
when the mode number is less than fi given approximately by (5.2.39). As in the
dynamic case, each tube has a family of spectral curves like those in Figure 5.18.
According to (5.2.63), the amplification grows exponentially with time or the
imposed axial strain. The exponential term in (5.2.63) depends on the mode
number, and the preferred mode number is approximately that which maximizes
the exponential. Consequently, we have the same situation as that occurring in
axial impact where maximizing (5.2.53) leads to the preferred mode number for-
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mula (5.2.54), again with the reasonable provisos that 2a38/3 and 2aBy? << |I.
This result means that the inertial forces do not influence the preferred mode selec-
tion. Also, the mode is not strongly dependent on the strain hardening.

Because the theory predicts negligible influence of the inertial forces on the
preferred mode selection, static buckling tests were performed on two 3-inch-long
(7.62 cm) tubes of 6061-T6 aluminum (Tubes 1-4), two 4-inch-long (10.16 c¢m)
tubes of 6061-T6 aluminum (Tubes 5-20), and two 4-inch-long (10.16 cm) tubes of
2024-T3 aluminum (Tubes 25-27). These tests produced preferred mode numbers
of 8, 10, and 10, respectively, as compared with 8, 12, and 11 from the correspond-
ing impact tests. Thus, experimentally, the changes in the number of halfwaves are
small.

Figure 5.24 shows the profiles of the two 3-inch-long (7.62 cm) tubes of
6061-T6 aluminum caused by static axial compression to about 0.7% axial strain.
Figure 5.25 shows a comparison of one of the profiles from the static test and the
profile of Tube 4 caused by axial impact. The preferred mode numbers are
identical.
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FIGURE 524 TUBE PROFILES FROM STATIC COMPRESSION
TESTS (Specifications of Tubes 1-4)
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FIGURE 5.25 COMPARISON OF TUBE PROFILES FROM STATIC AND IMPACT
TESTS (Tube 4)

5.2.12 Axial Impact of Plates

The dynamic buckling of plates is treated here as a special ease of the preced-
ing tube theory. A more general treatment can be found in Section 6.

In Section 5.2.4 we obtained the Equation (5.2.26) which governs the flow
buckling of plates compressed uniaxially in a manner similar to the tubes (Figure
5.16). By introducing the dimension quantities

u = wh & =x/L t = Vot/2L 9 =1 - 7/7
{3 = h¥/12L? B=E,/oq u = M/m s = ao/pVé (5.2.64)

in Equation (5.2.26) we obtain
i - QW + 2rafiee - 07 + o =0 5269

In (5.2.64), M is the mass per unit width of plate that is compressing the plate and
m = phL is the mass of a unit width of plate. With these modified definitions of
the masses M and m, the symbol 7 is again given by (5.2.30) and is the final axial
strain; thus 7y = u/2s. In (5.2.66), the dots and primes denote partial
differentiation with respect to n and .
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The set of equations governing the modal amplitudes is obtained by substitut-
ing the Fourier representations (5.2.33) and (5.2.34) into Equation (5.2.65). Thus
for each mode we have

i, — Qg /n - RAu, = S, (5.2.66)
where
Qn = (u{¥/3)(wn)t (5.2.67)
R = 2rulen? |1 - g8(wn)?] (5.2.60
Sp = 2rul?B(wn)! (5.2.69)

Because significant amplification occurs only if R2 > 0, only modes with
numbers less than n are amplified, where

i=1/{VBr (5.2.70)

The solution can proceed by the method outlined in Section 4.1.8 for
imploded cylindrical shells. However, here we shall retain our simplifying assump-
tion that the velocity of the compressing mass remains equal to the impact velocity
V,, for the duration of compression, given by r.

After omitting v and replacing T by
T = Vot/L (5.2.71)

the dimensionless quantities allow the governing Equation (5.2.26) to be written in
the form

i+ ({3 + s[{’p(u -0+ u] -0 (5.2.72)
where the dots and primes denote partial differentiation with respect to r and £.

Substitution in (5.2.72) of the Fourier representations (5.2.33) and (5.2.34) leads
to

i, + Qu, — R, = S, (5.2.73)
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where
Q, = (s{?/3)(wn)* (5.2.74)
Rl= s(wn)’[l - {’ﬁ(wn)’] (5.2.75)
S, = s{B(wn)* (5.2.76)

The solution of (5.2.73) satisfying the initial conditions (5.2.48) is (5.2.49), where
A,, B,, and y, are given by (5.2.50), (5.2.51), and (5.2.52).

Figures 5.26 and 5.27 show the amplification curves for Plate 20, a designa-
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FIGURE 528 AMPLIFICATION FUNCTIONS FROM INITIAL
OISPLACEMENTS (Plats 20)
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18

MGCDE NUMBER n

MA-7504-29

FIGURE 5.27 AMPLIFICATION FUNCTIONS FROM INITIAL
VELOCITIES (Plate 20)

tion meaning a plate with the specifications of Tube 20 (E,, oy, p, h, L, V,, and
appropriately modified m and M). The cuives are typical of flow buckling. Growth
is possible only if R2 > 0, which affects only modss with a number less than n
given by (5.2.75) as

i=1(VB~m (5.2.77)

A formula can he derived from the amplification function (5.2.50) for A,
with the Q,, R2, and S, of (5.2.74), (5.2.75), and (5.2.76), that provides an
approximate prediction for the preferred mode number. If we notice that the
predominant quaniity in (5.2.50) affecting the variation of A, with n is the factor

+‘I’ P . . e . . .
et , the value of n maximizing A, is given approximately by ax;/a(n') - (.
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With ne further approximations this maximization leads to the equation

(7N)¢ — (1882/s) (wN)* + (18B8/stD(wN)2 — (9/2sL) = 0 (5.2.78)
For negligible strain hardening (8 = 0), (5.2.78) reduces to

N3 = 3/232s {2

- (18V2 /w’)(L/h)’[Vo/ \/-—oo/p] (5.2.79)

For Plate 20, (5.2.79) predicts N = 7, which is consistent with the maximum
A (r¢) in Figure 5.26. Predictions for ail the plates given by the numerically
obtained maximum of A, by the solution of (5.2.78), and by (5.2.79), are identi-
cal. For 6061-T6 aluminum, the 3-, 4-, and 6-inch-long (7.62, 10.16, and 15.24
cm) piates have N = 6, 7, and 10 and for the 2024-T3 aluminum plates N = 7.
Because (5.2.78) and (5.2.79) predict the same values of N, the strain hardening
does not influence the selection of the preferred mode number.

The trend from rapid to slow buckling behavior in plates is completely
different from that in tubes. Equation (5.2.78) shows that as we consider smaller
impact velocities we regard s —oo, so N — 1, the lowest integer possible in the
representation. This decrease in mode number represents a large change, whereas,
for tubes the change is small.

A formula giving the amplification resulting from plate impact can be derived
if we first made the approximation

Anlrp = [m(xg - x,:)]e‘*"f (5.2.80)

This approximation requires that £28(wN)? is small enough to make S,/R 2 small.
If we now employ (5.2.74) and (5.2.75) for Q, and R,,, the result (5.2.78), and
¢ = upVE/20,, we can convert (5.2.80) into

V§ = (400/3pu) f(N) 2n (3AN/4) (5.2.81)

where

f(N) = [AwN)? / [1 - 23(2(1:N)2] (5.2.82)

As an initial prediction for V,, the preferred mode may be approximeted by
(5.2.79), that is, '

{HwN)2 = (97%/25)1/3 (5.2.79)
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Because s = oy/pV¢ appears in the right-hand side of (5.2.81), iteration is needed
to determine V,. However, for many cases we may neglect the term 28,*(wN)? so
that (5.2.81) becomes

Vo = 22/3) ”‘[C(oo/p)lm[p. en GAw/]"

= [(a-o/p)(h/L)]ln[p, gn (3Apj/4)r/4 (5.2.83)

Formula (5.2.83) provides a critical impact velocity for the criterion of a
specific value of A,

5.3 FORCES AND ENERGY ABSORPTION
DURING AXIAL PLASTIC COLLAPSE OF TUBES

5.3.1 Axial Collapse Experiments

Axial collapse experiments were performed with the apparatus shown in Fig-
ure 5.28. The shell to be tested is 4 inches (102 mm) in diameter and 6 inches
(152 mm) long. A steel aft mass weighing 3.5 pounds (1.59 kg) in the form of a
thick, stepped plate is seen at the left end of the shell. The smaller diameter is a
slip fit into the shell, and the larger diameter extends outside the shell diameter to
provide a flat bearing surface at the step. The front end of the shell is similarly
supported by a thin plate that extends up to a guide bushing. The aft mass is con-
nected to the same bushing to form a stiff carriage for accelerating the mass and
shell. This is a peg-in-hole connection so that on impact the mass moves forward
freely.

The carriage bushing slides on a steel bar to maintain alignment of the
cylinder as it moves. The assembly is accelerated by another peg-in-hole connec-
tion to a pusher bar, seen at the left of the photograph with its peg not yet inserted
into the carriage. The pusher bar is accelerated by a pneumatic piston below the
track that supports the pusher carriage and guide bar (not seen in the photograph).
Impact is against a 6-inch-thick (152 mm) by 12-inch-square (305 mm) steel target
block. The guide bar is secured to the target block by a press fit into a hole in the
block accurately machined at a right angle to the impact surface. This arrangement
gives impact simultanously around the circumference of the shell to within 5 us at
impact velocities near 100 ft/s (30 m/s).
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FIGURE 5.28 SHELL, END MASS, AND GUIDE APPARATUS FOR AXIAL
COLLAPSE EXPERIMENTS

Figure 5.29 gives post-test photographs of an aluminum 6061-T6 sheli with a
wall thickness of 0.035 inch (0.89 mm, a/h = 57) tested at an impact velocity of
102 ft/s (31 m/s). It buckled at the ends, where the stress was highest for the
longest time. The total crush (change in length) was 1.55 inches (39.4 mm). Four
half-buckles (two inward, two outward) collapsed at the front end, and one (out-
ward) collapsed at the aft end. The average half-wavelength, referred to the unde-
formed state, was 0.308 inch (7.82 mm). The first two half-buckles at the front
end were in the symmetric mode and the second two were in the third mode
(triangular).

Figure 5.30 gives photographs of an ogival cone of the same wall thickness,
length, and aft diameter as in the cylinder, impacted at the same velocity. Its

P




RN

A i S Pl L i -

H
i
¥
3

B b doaete b

- e itk e+ g e AR

e

FIGURE 5.29 PLASTIC COLLAPSE BUCKLING IN 0.035-INCH-THICX (0.88 mm) *
ALUMINUM CYLINDRICAL SHELL IN 102 ft/sec {31 m/s) IMPACT

{a = 2 inches = 51 mm, L = 6 inches = 152 mm)
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FIGURE 5.30 PLASTIC COLLAPSE BUCKLING IN 0.035-INCH-THICK (0.89 mm)
TAPERED ALUMINUM CONE IN 102 ft/sec (31 m/s) IMPACT

{Ogival cone, front radius 0.5 inch (12.7 mm), aft radius 2 inches
(51 mm), length 6 inches (152 mm)

front-end diameter is 1 inch (25 mm), so its radius-to-thickness ratio ranged from
14 at the forward end to 57 at the aft end. Total crush was 2.68 inches (68.1 mm),
entirely at the front end where axial stress and strain were highest. Seven buckles
formed, the first in the symmetric mode, the second in the fourth mode, and the
remaining five in the third mode.
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Figure 5.31 gives the record from an accelerometer mounted on the aft mass,
and a tabular summary of observations made from motion pictures taken at 10,000
frames/s. The overall character of the acceleration is that it gradually increases as
the buckles form, because each buckle is a. a larger diameter of the cone and
requires a larger force to crush. The numbers on the curve correspond to the times
at which each buckle was first visible in the motion pictures, as given in the inset.
As each buckle begins to form, the acceleraiinn increases, and as each nears com-
plete collapse the acceleration decreases.

A similar observation was made for the cylindrical shell, but the pattern was
not as apparent because only a few buckles formed and the effects of the forward
and aft buckles were intermingled. A third experiment, on a cylindrical shell with a
0.060-inch-thick wall (1.5 mm, a/h = 33), showed similar collapse but entirely in
the symmetric mode.
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FIGURE .31 ACCELERATION OF AFT MASS IN CONE TEST

5.3.2 Theoretical Estimates of Collapse Forces

Shell crushing as in these experiments takes place in two distinct stages, buck-
ling and collapse. In the initial stage, a buckling pattern is established by axial
compression, nearly uniform along the shell length, that amplifies some of the
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small imperfections in the shell. This stage is the subject of Sections 5.1 (thin
shells) and 5.2 (thicker shells, as in the tests here) and lasts only a few transit
times of an elastic wave along the shell length. During this time, buckles are
formed throughout the shell length, sometimes too small to be seen but much
larger than the imperfections, so they determine the buckle wavelengths for the
second stage. In the second stage, the buckling pattern undergoes the large defor-
mation collapse that was observed in the motion pictures here. This collapse stage
can last orders of magnitude longer than the buckling stagc and, except for very
thick shells, absorbs most of the impact energy.

For shells of intermediate radius-to-thickness ratio, as in Figures 5.29 and
5.30, the buckling modes of the first stage pass reasonably unaltered into the col-
lapse modes of the second stage. For very thin shells, the buckling modes of the
first stage are altered by large deformation elastic buckling which, as seen in Figure
5.1, can increase the buckle wavelengths by factors of two to six. This process is
extremely complex. The buckle pattern for a collapse analysis of these thin shells
is probably best determined by a heuristic argument for patterns that minimize
stretching and the length of plastic hinges that form during collapse. These are the
Yoshimura® diamond patterns.

Shells in which the transfer from buckling to collapse takes place in essentially
the same pattern are those in which buckling is initiated by axial plastic flow, as in
Section 5.2. Thus, for the shells of Figures 5.29 and 5.30, we use buckle modes
determined by the analysis of Section 5.2 as initial conditions for a collapse analysis.

Equations (5.2.51), (5.2.52), and (5.2.54) were used to calculate the theoreti-
cal half-wavelengths in Table 5.2. These agree well with the observed half-
wavelengths of collapse in the two cylindrical shells. Calculated wavelengths for
shells in the range 30 < a/h < 100 are given to an accuracy of 2% by the formula

A, = 5.6h + a/20 (5.3.1)

To calculate collapse force, we use the simple symmetric mode shape shown
in Figure 5.32 and calculate the energy required to collapse a buckle from zero dis-
placement to the nearly completely folded form in Figure 5.32(b). Approximate
extension to polygonal buckles is described later. The simple buckle shape is sug-
gested by the two principal mechanisms of energy absorption, membrane plastic
flow and plastic bending. In this idealized buckle shape, membrane stretching and
compression take place as hoop strain in the straight sections, and plastic bending
takes place as plastic hinge rotation at the apex of each half-buckle.

In this model, the force at the beginning of collapse is infinite, but the energy
is finite. A large initial force has a counterpart in the experiments, as seen in Fig-
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FIGURE 5.32 BUCKLING SHAPE USED IN THEORY TO PREDICT
PLASTIC COLLAPSE FORCE

ure 5.31, but the model is not expected to reproduce the detailed force history.
Instead, we calculate the energy U for complete collapse and divide by the axial dis-
placement to determine an average value for F. Thus, we use

Fue = U/Q\, — 3h) (5.3.2)

in which 3h is the typical final value A of instantaneous half-wavelength A as
observed in the experiments. For complete folding to a solid form, A¢ = h.

During crush, the instantaneous energy absorbed by hoop strain is

A, /2
U, = 2waho, 2 e(\,s) (5.3.3)
0
in which o, is flow stress, and
e(A,s) = 2As/\,a (5.3.4)

is circumferential strain. The instantaneous buckle amplitude, from the geometry
in Figure 5.32, is

AQ) = (W2 - aA)Y2 (5.3.5)

Substitution of Equation (5.3.5) into Equation (5.3.3) and integration as indicated
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gives for the instantaneous hoop energy

who, A

R O

The total hoop strain energy absorbed by each half buckle is found by substitution

of the finel value A; = 3h, which gives

who, A,

Uh(3h) - 2

2 - 9hH)* (5.3.6)

The instantaneous energy absorbed by a plastic hinge is
Uy(A) = 27aM 0 (5.3.1
where the piastic moment” per unit of circumference is
M, = oh?/4
and, from the geometry in Figure 5.32, the hinge rotation 0 is
8 = 2cos ' (A/A,)
The total energy absorbed by each plastic hinge is
U,(3h) = mach? cos™'(3h/A,) (5.3.8)
The strain energies from Equations (5.3.6) and (5.3.8) are added and then
equated to the work done by the average axial force as indicated in Equation (5.3.1)

to obtain finally

wha,

FIVO - Ao — 3h

A,
5 (A2 - 9n)V2 + ah cos~'(3h/A,) (5.3.9)

With Equations (5.3.1) and (5.3.9), a graph was constructed of the average
collapse force versus radius-to-thickn:ss ratio. The resuit is shown in Figure 5.33.
The collapse force is normalized witii respect to F, = 2waho,, the force that pro-

.Bending strain dominates at the hinges, and hoop strain dominates away from the hinges. Therefore,
the interaction of hoop and bending deformation is neglected.
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FIGURE 533 PREDICTED AVERAGE PLASTIC COLLAPSE FORCE VERSUS
RADIUS-TO-THICKNESS RATIO IN 6061-T6 ALUMINUM
CYLINDRICAL SHELLS

duces yielding of the shell in axial compression. Also shown are the separate con-
tributions from hoop strain and from bending at the plastic hinges. The contribu-
tions from the two mechanisms are comparable.

8.3.3 Comparison of Theory and Experiment

Equation (5.3.9) was evaluated for the two cylindrical shells in the experi-
ments. For both cases, o, = 45,000 psi (310 MPa) and a = 2 inches (51 mm).
For the first shell, h = 0.035 inch (0.89 mm), a/h = 57, and A, = 5.6h + a/20 =
0.296 inch (6.83 mm). The calculated average collapse force is F,,, = 3250 pounds
(1483 kg), and the calculated acceleration of the 3.5-pound (1.60 kg) aft mass is
930 g. This is in excelient agreement with the average acceleration measured dur-
ing postbuckling collapse, as shown in Figure 5.34(2)* For this case 33% of the
energy was absurbed in hoop strain and 67% in bending strain.

‘The measured acceleration versus time histories have been converted to acceleration versus crush for
comparison with the theory. This conversion is particularly useful for the cone discussed later.
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FIGURE 5.34 MEASURED AND PREDICTED AVERAGE ACCELERATIONS
FOR TWO SHELLS

For the second shell, h = 0.06 inch (1.52 mm), a/h = 33, and A\, = 5.6h +
a/20 = 0.436 inch (11.1 mm). The calculated average collapse force is F,,. =
7420 pounds (3386 kg), and the predicted acceleration of the 3.5-pound (1.60 kg)
aft mass is 2120 g. This is also in good agreement with the average acceleration
measured during the postbuckling collapse of a single buckie. For this case, 40% of
the energy was absorbed in hoop strain and 60% in bending strain.

Thus, this simple theory can predict the average postbuckling collapse force,
even though the assumed axisymmetric buckling modes are not the only ones
observed in the experiments. [Recall that, in the plastic collapse test of the 0.035-
inch-thick (0.89 mm) shell, the first two buckles formed were axisymmetric, but
the other two buckles were in the third (triangular) mode.]l This is reasonable
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because the average hoop strain energy depends primarily on the axial buckle
wavelength, and the bending strain energy depends only on the shell circumfer-
ence, both of which are independent of the circumferential buckling mode. This
result also suggests that the theory can predict the collapse force in the tapered
cone, in which most of the buckles produced were asymmetric. Therefore, the
theory was applied to the cone.

As for a cylinder, the theory applied to a cone can be used to predict the aver-
age force for the collapse of each buckle. Thus, for the collapse of more than one
buckle, the theory would predict the force-crush function to be a series of steps
corresponding to the collapse of buckles at increasing diameters and buckle
wavelengths. Since this stepped function is an approximation to the smooth and
continuous force-crush function shown in Figure 5.31, no loss in accuracy is intro-
duced by approximating this stepped function by a smooth and continucus function.
Specifically, it is assumed that the strain energy density is a continuous function of
the coordinate x along the cone axis. Thus, in Equations (5.3.1) and (5.3.9), the
wavelength A,, as weil as the radius a, are taken as continuous functions of x.

The force-versus-crush relutionship for the cone test was then caiculated from
Equation (5.3.9). For comparison with experimental data, two conversions were
made. First, the crush force was converted to acceleration of the aft mass by divid-
ing it by the weight of the 3.5-pound (1.60 kg) mass. Second, the axial coordinate
x was converted to crush distance by multiplying it by the factor (A, — 3h)/A,,
where this factor is also considered a continuous function of x,

The predicted and measured curves of acceleration versus crush distance are
shown in Figure 5.34(b). As for the cylinders, good agreement is obtained between
the predicted and measured average acceleration versus crush.
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6. PLASTIC FLOW BUCKLING OF RECTANGULAR PLATES

6.1 INTRODUCTION

Figure 6.1 .hows the plastic buckling that occurs when tubing of square cross

section is subjected to axial impact at velocities sufficient to cause moderate plastic
strains.! Each side of the tube is a laterally supported rectangular plate under uniax-
ial compression. In the experiments to be discussed later, it was found that the
wavelengths of the buckles like those shown in Figure 6.1 were fairly uniform along

the length of each plate and that they were reproducible.

CLAR . R

FIGURE 6.1 P.ASTIC BUCKLIMNC OF SQUARE TUBES CAUSED
BY AXIAL IMPACT

Rather than develop a theory to address the experimental observations
directly, we consider first a more general case of imposed in-plane loading.
Specifically, we apply as part of the unperturbed state the proportional loading
N,, Ny, and N,, (see Figure 3.41 for plate nomenclature and coordinates) along
the edges of the rectangular plate to create a uniform stress field

o’, o), and 7,,° independent of the depth coordinate z. Buckling is again
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defined as the growth of plate deflections stemming from initial transverse
deflections or velocities. Derivation of the equation governing plate deflections
uses rigid-plastic theory with the von Mises yield condition, the associated flow
rule, and linear strain hardening. We assume that no strain-rate reversal occurs and
that the strain hardening allows us to approximate the unperturbed driving stresses
with constant values; that is, the strain hardening should not be
excessive.

The governing equation is specialized to treat uniaxial compression and is
solved by modal analysis. The solution predicts preferred buckling mode numbers
in reasonably good agreement with experimental mode numbers. The solution is
also used to derive formulas for preferred mode numbers and the relationship
between the plate impact velocity and the amplification of the initial deflections.

6.2 PERTURBATIONAL FLEXURE

The nomenclature, sign convention, and coordinate system are shown in Fig-
ures 3.39, 3.40, and 3.41. Let ¢,°, ¢,°, and €,,° be the midsurface strain rates
associated with the stresses o¢,’, o,’, and 7,°, caused by the external in-plane
loading N,, N,, and N,,. Then, as flexure develops because of initial transverse
displacements, w,(x,y) and w, (x,y), the strain rates are

Ey = &0+ zk, &y m E0 2k, &y m & + zky (621

assuming that plane sections remain plane. In (6.2.1), the changes of curvature
and twist are

atw oW %

Ky ™= — —> Ky - e~

ox? oy? K dxdy

(6.2.2)

where w = w(x,y,t) is the deflection added to the initial lack of planarity
w, = w,(x,y).

After eliminating €, by means of the plastic incompressibility condition
€&x+ € + ¢, =0
the equivalent strain rate becomes

e = 4(el + €] + é,é, + €2)/3 6.2.3)
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which, according to (6.2.1), is approximately
B2t B [0kt 60k G TR+ bRy (62.4)
In (6.2.4), & is the equivalent strain rate at the midsurface.

An approximation to the equivaient strain rate is obtained by noting that the

perturbation term in (6.2.4) is small relative to the unperturbated term, €. Thus,

approximately
m it WD) [e0 ke + & kg + G0k k)2 + by hnllés (6.25)

We now restrict our problem to cases of proportional loading. In other words, we

o

consider cases in which ¢,’, o,’, and r,,° are maintained in constant ratio
throughout the motion. With the usual assumption of plate theory that o, = 0,
the equivalent stress is given by

o?=oal+ a? - a0y + 37} (6.2.6)
and the proportional loading leads to constant values of the ratios
o /o, o,/ /a’, and 7, /0°, where o° is the midsurface value of the equivalent
stress. Because of the flow rule

é, = Ao, & = Aa, &y = A1, & =20d/3 (627

associated with the von Mises yield condition, we have the midsurface strain rate
ratios

€ /e, = 20, ~ 0,°)/2¢° &’/é, = Qo) — a,’)/20°
€y /€ = 31,4/20° (6.2.8)
and proportional ioading keeps these ratios constant. In (6.2.7)
ay = Qoy— o,)/3 and o, = Qoy, - 0,)/3 6.2.9)

are the deviatoric stresses when o, = 0. We can nuw integrate (6.2.5) to give the
equivalent strain

eme,+ (423 [é n,+ e n,+ (€ 1y +¢,°1,)/2 + &, x| /€,  (6.2.10)

et e b b Lahias o Vs e




.

352

The flow rule in the form (6.2.8) allows us to express (6.2.10) as
€ = ¢, + 20,6, + ok, + 27,7 K,)/c° 6.2.11)
which we can introduce in the linear strain-hardening law

o = o, + Epe (6.2.12)
to give

o =0 + 2(oc k + o,k + 27, Kk )Ey/o° (6.2.13)

From the flow rule (6.2.7) and the deviatoric stress (3.2.9), we have
ox = Qé, + &) 20/38) o, = Q¢ + &) (20/38)
Ty = €4(20/36) (6.2.14)

If we substitute in (6.2.14) the strain rates (6.2.1) and (6.2.5) and the stress
(6.2.13), we obtain the stress formulas

ox = o + 7f{Q2 = 3a2/Diey + (= JaB/Dik, = Iayitn /i,

+ E, alak, + Bk, + Zyxxy)] (6.2.15)

oy = o0 + z[{(l — 3ap/Di, + @ — 3BYDk, — Pyiy )i,

+ E, Blax, + Br, + 27:(,,)] (5.2.16)

r = '+ 2= Gay/Di, — GBy/Di, + (1 = 3yDig) /A,

+ E, ylax + B, + 27Kx,)] (6.2.17)
where
a=oyle® B=olc" y=r14/c° (6.2.18)
and
Ao = 3é,/20° (6.2.19)
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From the yield surface relation (6.2.6) the constants are related by
a’+ Bl—af + Iyl =1 (6.2.20)
which means that only two of the three possible loading forces N,, Ny, and N,,
are independent when plastic straining is occurring in all three components. The
loading is specified by two of the constants a, 8, and y of (6.2.18) and the flow
rule (6.2.8) requires the corresponding strain rate ratios to be
& /€, = Qa — B)/2 €&’ /e, = (28 — a)/2
€xy /€, = 3y/2 (6.2.21)
We still have to specify the loading rate through the midsurface equivalent strain
rate, €,, before the lcading specification is complete. Another way of looking at
loading rate specification is to specify one of the strain rate components while keep-
ing their ratios constant, in accordance with (6.2.21). This procedure determines
the equivalent strain rate, €,. Time integration determines ¢, and hence, by

(6.2.12), the equivalent stress c°. Thus the A, of (6.2.19) is determined.

The forces and moments in a plate or thickness, h, resulting from the stress
distribution (6.2.15), (6.2.16), and (6.2.17) are

N, =0h N, =ga’h Ny =r1,h (6.2.22)

M, = [(@ = 3a2/2i, + (1 = 3ap/2Dk, = 3aviyl/i,

+ Ep, alak, + By + 2ykyy) ]h3/12 (6.2.23)

M, = [l0 - 3ap/Dk, + @ = 387/, — 3Byicy )ik,

+ Ep alak, + By + 2yxy) lh3/12 (6.2.24)

My = |( ~Gay/Diky ~ GBy/Dk, + (1 = 3yDiyliA,

+ E, ylax, + Bry + 2yxy) ]h3/l2 (6.2.25)
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Once again we see that each moment has two components, one directional and the
other hardening.

6.3 GOVERNING EQUATION
6.3.1 General Loading

The equation of motion of a plate was derived in Section 3.5. Allowing for
the deflection being the sum of the initial and buckling deflections, we have

M, M, | M,
ax? axOy dy?

2 2
+ N, 2 4N, 2

9?2 azw
axt T N gxay (w+w,) =

+N’a 2 at2

(6.3.1)

After substituting expressions (6.2.22) through (6.2.25) for the forces and
moments, with (6.2.2) giving the curvature and twist changes, (6.3.1) becomes

l(4 - 3a) %% - 12ay —— O +2(4 — 3aB — 6y?) bl

9x39y 9x%0y?
w a‘w _h?
-12 + (4 - 382
BY Sy T W) e 2,
3w 3w AW a‘w hE,
+ e + +2(ap + + 2
axt 497 Gy 2B Z’I)a’a2 Radrrre ) T
0 8 g o 02 Lo (w+w,) + pii =0 6.3.2)
B ML T R T T ’az“’w oW = s

The constants a, 8, and y are given by the midsurface stress ratios (6.2.18).

6.3.2 Uniaxial Compression
To represent uniaxial compression, we take

o, = —c° (¢®° > 0), oy =0, °Cm
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so that from (6.2.18)

a = -1 B=0 vy =0
Consequently, the flow rule formulas (6.2.21) give the strain rates
€ = —é, (€, > 0) , €& = /2, ép=10.
and (6.2.19) gives the plastic flow parameter
Ao = 3&°/20°,

We specify €,”, and hence €,, from which we obtain €,. The linear strain-
hardening law (6.2.12) then gives o°, and hence o,”. Thus A, is determined.

The governing equation (6.3.2) now reduces to

Uxohz 94w 4w 9w
+38 +4
24¢, |9x? ax¥By?  oy!

hE 3w _ _o3W +,,w..o;% 6.3.3)

+
12 ax* " axt

As an approximation we let the uniaxial stress o,’ be a constant equal to the aver-
age value from the stress-strain curve up to the strain at which the deflections are
to be evaluated. Also, we shall restrict our solutions to cases of constant strain
rate. Thus, we let

o, = —a (>0 & = —V/a 6.3.9)
where V is rate of decrease of a plate of length a.

By introducing in Equation (6.3.3) the dimensionless quantities

u = w/h u, =~ w,/h & = x/a n =y/b
r=Vt/a a?="h¥12a) B =E,/T y =alb

s = G2pV? (6.3.5)

in which b is the width of the plate, we obtain the equation governing uniaxial
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compression in the form

g 3% % % ' 3% 9%,

+sal]— +8yl———= t Ay | + 2508 = + 25 = = — 25—

i + sa YE 8y YE v P 2sa’B YZ 2s YE 2s 3¢
() = d/dr (6.3.6)

The first term represents inertial resistance to buckling, the second group involving
u represents the directional moment resistance, the third term represents the
strain-hardening moment resistance, the fourth term represents the axial thrust
causing buckling, and the final term represents the influence of the initial deflection
imperfections.

6.4 UNIAXIAL COMPRESSION OF SIMPLY SUPPORTED PLATES
6.4.1 Modal Solution

In terms of the dimensionless space variables ¢, m, u (replacing x, y, w) the
boundary conditions for a simply supported rectangular plate are

ok

u=0 _6? = 0 & =0,1

w=0 3y a0 (6.4.1)
an

The initial plate deflection and transverse velocity may be represented by

u,(&,m) = Y ¥ ap, sinmwé.sinnwy (6.4.2)
u(£, 0,00 =Y ¥ by, sinmré.sinnmy (6.4.3)
m n

Physically, according to the dimensionless groups (6.3.5), the amplitudes a,,, and
bmn are fractions of the thickness h and the quantity hV/a, respectively.

For the deflection representation, we let

ulg,m,m) = 3 Y upa(r).sinmwé sinnwy (6.4.4)
m n
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in which the coefficients satisfy the initial conditions

Uma(0) = 0 10,0(0) = by, (6.4.5)

Substitution of (6.4.2) and (6.4.4) in the governing equation (6.3.6) leads to
the requirement that

ima + Qmn Yn — R2 Upn ™ St 8 (6.4.6)
where the coefficients are
Qm = sa’[(msr)‘ + 8y (mw)¥nm)? + 47‘(nw)‘l 6.4.7)
R = 2s(mu)’[1 - a8 (mw)’] (6.4.8)
Sm = 2s(mw)? 6.4.9)
The solution of (6.4.6) satisfying initial conditions (6.4.5) is
Upn(T) = Apn(?) apn + Bpoa(t) byn (6.4.10)

where
Ame = [0 = 23/ (= Ag = 1] (1 +54/R2) 641D

Bun = ("™ — gty / o= Agn) (6.4.12)

MG = [+ QA+ 4RDVI - Qu) 12 (64.13)

The solution (6.4.10) shows that each coefficient in the modal representation
(6.4.4) is obtained by an amplification of the corresponding initial displacement and
velocity coefficients. The magnification factors or amplification functions A, and

B, given by (6.4.11) and (6.4.12), contain exponential terms that suggest growth
with time. From (6.4.13), only A}, can be positive to provide exponential

amplification and A%, is positive if R2 > 0, thatis, if m < 1/ wavB. Thus i =
1/#a+/B may be considered as a cutoff mode number in that only modes with m <

m are amplified.

- A e b AN e o 4 A 20

o e W b R b e A 0 e o

= e e Sl
.




358

The partial derivative of A, with respect to (nw)? is negative for all positive
values of n. Hence the value of n that maximizes A, is n = 1, and we may

rewrite the solution in the form

u(g,n,7) = sinwn X un(r) sinmm¢
m

where the coefficients satisfy the equation

Um + Qm iUm — R2 up = Sy,

with

Qn = s"z[(m')‘ + 8(ym)i(mm)? + 4(7#)‘]
R = 2simm?[t - a2B(mm?]

Sm = 2s(mr)?
The solution of (6.4.15) satisfying the initial conditions

u,0) = 0 Un(0) = b,
is
un(®) = Ap(r)a, + By(r) by,

where
Ay = [(A;e*';'- aoet N/ -0 - 1](1 +Sy/R2)
B, = (e —e")/(\i=-22)

A& = [+ @2+aRD - Qa|r2

6.4.2 Amplification Functions

(6.4.14)

(6.4.15)

(6.4.16)

(6.4.17)

(6.4.18)

(6.4.19)

(6.4.20)

(6.4.21)

(6.4.22)

(6.4.23)

The dependence on the mode number m at a given time of the amplification
functions (6.4.21) and (6.4.22) is illustrated by plate LAC-2 of the experiments
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described in Section 6.6. The data for LAC-2 are as follows:

length a = $5inches (12.70 cm)
width b = Y% inch (1.91 cm)
thickness h = 1/16 inch (0.16 cm)
density p = 0.097 1t/in.} (2.7 g/cm?)
impact velocity V = 310 ft/s (94.45 m/s)
yield stress o = 30,000 psi (207 MPa)
hardening modulus E, = 48,300 psi (333 MPa)

The corresponding values of the dimensionless parameters are
a? = h¥12a? = 1/76800 B8 = E,/T = 1.61 v = a/b = 6.67
s =g/2pV? = 429 ¢ = 0.16

in which 7;is the fractional shortening of the plate caused by uniaxial compression.
The parameter values are substituted in (6.4.16) through (6.4.18), leaving
Qms Ry, and S, and hence A} and A, as functions only of the mode number
m. The resulting amplification functions are' shown in Figures 6.2 and 6.3. The
development and shape of the curves are typical of plastic flow buckling showing
the band of harmonics with the largest amplification. The value of the preferred
mode number, corresponding to the maximum amplification, remains the same
during the second half of the motion.

6.4.3 Preferred Mode and Critical Velocity Formulas
In many cases, including the experiments discussed in Section 6.6, the proper-
ties and conditions are such that Q,, >> 2R, when m is near the preferred mode

number. In these cases we may approximate the final value of the amplification
function by

Ay (r) = etn"rm (6.4.24)

Differentiation of (6.4.24) with respect to m? and equating the result to zero leads
1o the equation

[l + 8aB (ym) Y (mm)* + 8a?B (y#)2(mw)? — 4(ym)*=0 (6.4.25)

for the preferred mode. This result may be simplified even further for cases in

ot ¥ E bt S d n e mt e

!
;
!

o i e




360
which a8 (ym)? < 2 or, with physical quantities, E,/& < 2(b/h)?. In these
cases,

m? = Zy’lll + 8aB(yw)?)V2 - 2a%8 ('yw)’] (6.4.26)
Finally, if 8a28 (y#)? is smail enough to aliow binomial approximations, we have

m? = 27’[1 + 2?8 (711')2] = 2y? (6.4.27)

Let us examine briefly the conditions we have introduced. The condition
Q2 >> 4R}, assuming that the preferred mode is comparable to the value of y =

140 T T 1 T
T
120 I -
100 - -
i~ 09 r,
z
80 |- .
0.8 f'
_ “r 0.7 r, 7]
' 2 .
0 1 ] L 1
0 8 "0 18 20 %
MO\ € NUMBER — m
AA-7804-31

FIGURE 6.2  AMPLIFICATION FUNCTIONS FROM INITIAL
DEFLECTIONS
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FIGURE 6.3  AMPLIFICATION FUNCTIONS FROM INITIAL
VELOCITIES

a/b, is satisfied if #*(G/pV?) (Wb)*(a/b)? >> 1. If we consider a plate between
two rigid walls that approach each other at velocity V satisfying V/c <<
72(h/b)2(a/b) /8Y?, where ¢ = (E,/p)V?, the preferred mode by (6.4.25), is
independent of V. For pilate SAC-4 of the experiments, we require V << 5600
ft/s (1707 m/s). In the experiment, V = 578 ft/s (176 m/s) produced a shorten-
ing of 29%, so we predict that the preferred mode is independent of impact velocity
for this plate geometry and material.

The next condition, E,/& < 2(b/h)?, also applies to the experimental plates.
For SAC-4, we have b/h = 4 and ¢ = 30,000 psi (207 MPa), so if the average
hardening modulus is such that E, < 960,000 psi (6614 MPa), we can employ
(6.4.26) to predict the preferred mode. The final condition in physical terms is that
(2%%/3) (h/b)?8 should be small enough compared with unity to allow binomial
approximations. For plate SAC-4, which has the highest value of the thickness-to-
width ratio of all the plates tested, we obtain 0.66. Formula (6.4.26) gives m =
1.06V2Zy = 15, whereas (6.4.27) givesm = 2y = 14

If we approximate the preferred mode number by m = /2y and substitute
this value in (6.4.16) and (6.4.17) for Q, and R2, we obtain from (6.4.24) the
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corresponding amplification function

Aglr) = s’ (6.4.28)

where 74 = Vi;/a. We are now in a position to obtain an approximate relationship
between V, the constant rate of plate shortening, and the amplification function for
the preferred mode, at time ;.

Let the physical event correspond to the experiments of Section 6.6, as
depicted in Figure 6.4. The plate with a mass M at the rear impacts a rigid surface
at normal incidence with a velocity V. Because for simplicity the theory assumes a
constant velocity throughout the shortening Aa, we take the duration of shortening
to be t; = Aa/V, therefore, r; = Aa/a is the final value of the strain ¢,. We now
equate the plastic work to the initial kinetic energy of .he mass to obtain

abhdr, = MVY2 (6.4.29)
é --1 -
V, Z
Rigid f ‘ // Rigid
Wall 7 / Mass
T
v
MA-7504-40

FIGURE 64 PLATE UNDERGOING COMPRESSION

Introducing in (6.4.29) the plate mass and the mass ratio

m = pabh u = M/m (6.4.30)
gives
Ty ™ pp.V’/2E (6.4.3l)

Substitution of 7 from (6.4.31) into (6.4.28) then leads to the required relationship
between impact velocity and amplification function

V! = (2G5/pu) 62 (yw)itnA,

= a¥a/pu) (Wb)enA, (6.4.32)
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Formula (6.4.32) may be regarded as a formula for the critical impact velocity that
produces the maximum acceptable amplification factor. For plate SAC-4, if we
choose A, = 10 the critical velocity is V. = 670 ft/s (204 m/s). In the experi-
ment, an impact velocity of 578 ft/s (176 m/s) caused moderately large buckling
amplitudes.

6.4.4 Directional and Hardening Moments

When formula (6.2.23) for M, is specialized for application of uniaxial
compression of simply supported plates, it becomes

M, = [(k,/z + k)N, + E,,x,]h3/12 (6.4.33)

where )l., = 3V/2ac, and the curvature changes are the derivatives (6.2.2). In
terms of the dimensioniess - ariables £6.3.5) the moment expression (6.4.33) is

%
0¢?

kS

+ 292
761;’

M= — [ + 33l ]a2/3 (6.4.34)

ag?
where M = M,/ h?.

In Section 6.4.1 we showed that the preferred lateral mode number isn = 1,
so we represent u by (6.4.14) and M by

M = sinwq 3 M, sinmw¢ (6.4.35)
m

Thus, Equation (6.4.34) gives
Mo = [imm? + 20m2in + 38mma,|at3  (6.436)

The amplification function is A, given by (6.4.28) when we approximate the pre-
feired mode number by m = /2 v. For displacement imp-:fections alone,
Upm = Apapmso (6.4.36) becomes

M, = |2/3a? + 68 (y‘n)zlazAmam/J (6.4.37)

givii.2 as the ratio of the directionai and hardening moments

A = M@/MP = 1/9a%8 (yr)* = (4/3x%) (b/h)G/E, (6.4.38)
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Among the simply supported plates of the experiments, SAC-4 gives the lowest
value of the ratio A (1.34), which indicates that for this plate the directional
moment is more important than the hardening moment. For SAC-1, 2, and 3,
which have half the thickness of SAC-4, we obtain A = 5.36, so in these plates the

directional moment dominaies.

6.5 UNIAXIAL COMPRESSION OF UNSUPPORTED PLATES
In the CSC series of experiments, the plates were not supported along the
edges. It was observed that the plate buckling deformations were independent of

the transverse <oordinate. Consequently, we eliminate the y coordinate from our
theory to predict the preferred buckling mode and to obtain a critical velocity

formula.

6.5.1 Governing Equation, Modal Solution, and Amplification Functions

If the dimensioniess deflection u is taken to be a function of dimensionicss
length and time, ¢ and 7, the governing equation (6.3.6) becomes

i + sa?0™ + 2sa’Bu” + 2su” = —2su,”’ 6.5.1)

() =84 () = a/a¢

where the dimensionless quantities are those of (6.3.5). The boundary conditions
are

u~=0 and u' =0 at § = 0,1 (6.5.2)

The initial plate deflection and transverse velocity may be represented by

u ) = 3, a, sinmr§ (6.5.3)

u(¢,0) = 2 by, sinmré 6.5.4)
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The buckling deflection may be represented by
u(g,7) = ¥ uplr) sinmué
m

in which the coeflicients satisfy the initial conditions

U@ =0  §,0 = b,
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(6.5.5)

(6.5.6)

Substitution of (6.5.3) and (6.5.5) in the governing equation (6.5.1) leads to

the requirement that
Um + Qmim — RAUy = Spap
where the coefficients are

Qm = sa’(mw)*
RY = 2s(mn)?[1 - a8 (ma)?]
Sm ™ 2s(mn)?

The solution of (6.5.7) satisfying the initial conditions (6.5.6) is
Up(r) = A (r)a, + B,(r) b,

where the amplification functions are given by

Ap~ [(x;e";' - A;e‘*')/ P oy 1] (1 +S,/R3)

Bp= ("= = ¢e"") / (A - a2)

Ap = [:t Q2 + 4R - Qm]/Z

6.5.71

6.5.8)

6.5.9)

(6.5.10)

(6.5.11)

(6.5.12)

(6.5.13)

(6.5.14)
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6.5.2 Preferred Mode and Critical Velocity Formulas

In formulas (6.5.12) and (6.5.13) for the amplification functions, the dom-
inant factor is the exponential term with the positive power At7. We can there-
fore base a prediction for the preferred mode on the value of m that maximizes

A). From (6.5.14), (6.5.8), and (6.5.9), A is maximized by the value of m
satisfying

2
sat(mm* - [1 - 2028(mm?]" = 0 (65.15)

In many cases, as in the CSC series of experiments, we may neglect 228 (m#)? in
(6.5.15) to obtain

m = 1/z (sa*)V/6 (6.5.16)
for the preferred mode number.

If (6.5.16) is substituted in formula (6.5.12) for the amplification function A,
we obtain

a)3y
Ap(r) = @He¥ (6.5.17)
for its value at the final compressive strain 7.

We again consider the plate being compressed between a rigid wall and a mass
M that approaches the wall at 2 constant velocity V, as shown in Figure 6.4. Substi-
tution of the relationship (6.4.31) for the final strain in (6.5.17) leads to the rela-
tionship between the impact velocity and the amplification function

VI = (45 /pu*?) alen(4A,/3) 132 (6.5.18)

Formula (6.5.18) may be regarded as a formula for the critical impact velocity that
produces the maximum acceptable amplification factor. For plates 4CSC-1, 2, if we
choose A, = 10 the critical velocity is V. = 70 ft/s (21 m/s). In the experiments,
the results of Figure 6.5 show that distinct amplitudes occurred at V = 59 ft/s (18
m/s) and that excessively large amplitudes occured at V = 100 ft/s (30 m/s), indi-
cating that the critical velocity formula provides reasonable predictions.

6.5.3 Directional and Hardening Moments

If we follow the procedure of Section 6.4.4 for comparing the magnitudes of

T G ra e o B w =
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FIGURE 6.5 PLASTIC BUCKLING OF RECTANGULAR PLATES CAUSED
BY INPLANE IMPACT

the directional and hardening moments, we find that the dimensionless moment is
M= —(@ + 38u)'al/3 6.5.19)

which is (6.4.34) when u is independent of n. When M is represented by
M =3 M, sinmn¢ (6.5.20)
m
and u is represented by (6.5.5) we have

M, = (i, + 3Bu,) (mn)2a?/3 (6.5.21)

If we let m be the preferred mode number given approximately by (6.5.16) and
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confine our investigation to the amplification function A, given approximately by
(6.5.17), we obtain from (6.5.21)

Mo = |2 + 3g]un(mmay3 (6.5.22)

Hence (6.5.22) gives ihe ratio of the directional and hardening moments as

A= MO/MD = (a?)V3/38 (6.5.23)

For plate 4CSC-3 this ratio is A = 5.9, which indicates that the directional
moment is more important than the hardening moment. The values of A for
4CSC-2 and 4CSC-1 are 9.8 and 8.9.

6.6 COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

Square tubes of aluminum alloy 6063-T5 were projected against a massive
steel target slab as described in Section 5.2.9 for circular tubes. Figure 6.1 shows
an undeformed tube and three specimens designated LAC-1, -2, and -3 that were
subjected to axial impact at velocities of 184, 310, and 344 ft/s (56, 94, and 105
m/s). Buckling is evident in LAC-2 and LAC-3. Each side of the tube is regarded
as a rectangular piate. In the theory, the edges are regarded as simply supported
because rotation occurred there. The transverse mode is a single halfwave (n =
1), and several waves appeared along the length. The stress-strain relationship was
obtained from standard tensile tests, the results from which are shown in Figure 6.6

Table 6.1 lists the data for 12 plate experiments. The last three specimens
listed (4CSC-3, -2, -1) were from tubes of square cross section but with cuts along
the edges to provide free supports. Figure 6.5 shows the buckled state of these
plates caused by impact.

Table 6.2 compares the predicted and experimentally obtained preferred mode
of buckling. The numbers refer to the number of halfwaves along the length of the
plate. In the column under A (7(), the numbers were obtained from the maxima
of formula (6.4.21) when r = 7;. These are the mode numbers based on the
growth of the initial deflection imperfections. Similarly, the numbers in the column
headed B, (7() were obtained from the maxima of formula (6.4.22) when r = 7.
These predictions are based on buckling arising from initial velocity distribution.
The column headed formulas gives the preferred mode numbers predicted by
(6.4.27) for simply supported plates or by (€.5.16) for plates with free edges, both
for initial deflection imperfections. The final column gives the numbers obtained in
the experiments.
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A comparison of the predicted and experimental mode numbers in Table €.2
indicates that the theory employing the growth of initial deflection imperfections
leads to satisfactory predictions. For the simply supported plates, the predictions
based on the influence of the initial transverse velocity distribution are low, espe-
cially for the plates in which the buckling is not well developed. In these cases the
B, vs m curves are still fairly flat over a wide range of m; therefore, selecting the
maximum to give the preferred mode is not necessarily realistic. The predictions
improve for plates with well developed buckling (for example, see the trend for
SAC-3, -2, and -1). For the free supported plates (4CSC-3, -2, -1), the predictions
based on the influence of the initial transverse velocity distribution are satisfactory.

6.7 SLOW BUCKLING

When the impact velocity is small the inertia terms in Equation (6.3.6) can be
neglected; the parameter s, which contains the velocity, then cancels throughout.
Equation (6.4.15) for the modal amplitudes becomes

Quim - Rg\um = Smim
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Table 6.1
EXPERIMENTAL DATA FOR RECTANGULAR PLATES

Width Thickness  Yield  Modulus? Velocity Shortening

b h F E, \' Aa/a Made}
Specimen”  (cm) (em) (MPuS  (MPw (m/9) (%) m
SAC-3 1.27 0.159 207 333 61 10 19
SAC-2 127 0.159 207 333 91 23 19
SAC-1 127 0.159 207 333 122 36 16
LAC-\ 1.91 0.159 198 404 56 1 13
LAC-2 191 0.159 207 333 9% 16 12
LAC-3 191 0.159 207 333 10§ 30 14
LAC-4 191 0.318 207 333 s 15 14
LAC-5 191 0318 207 333 140 20 10
SAC-4 1.27 0318 207 333 176 29 13
4CSC-3 19 0.159 164 1792 18 1 8
4CSC-2 1.9 0.159 177 839 30 3 10
4CSC-1 1.91 0.159 17 839 35 3 10

* All plates of length a = 12.7 cm (5 inches).
t Valuc at ¢« = 10% when ¢ > 10%,

¥ Number of haifwaves.

§0.1 MPa = 14.5 psi ~ | bar.

Table 6.1 (concluded)
EXPERIMENTAL DATA FOR RECTANGULAR PLATES

Width Thickness  Yield Modulust Velocity Shortening

b h G En v Aa/a Mode#
Specimen®  (inch) (inch) (psi) (psi) (ft/s) (%) m
SAC.3 172 1/16 30,000 48,300 199 10 19
SAC-2 172 mne 30,000 48,300 300 23 19
SAC-1 172 116 30,000 48,300 400 36 16
LAC-1 k7 1716 28,700 58,600 184 7 13
LAC-2 N 1716 30,000 48,300 310 16 12
LAC-3 3/4 1/16 30,000 48,300 kI 7] 30 4
LAC-4 34 1/8 30,000 48,300 k¥xi t5 14
LAC-S 34 1/8 30.000 48,300 460 0 10
SAC-4 172 1/8 30,000 48,300 S718 29 13
4CSC.3 3/¢ 1/16 23,800 260,000 59 1 8
4CSC-2 3/4 1116 25,700 121,700 100 3 10
4CSC.1 /4 1716 25,700 121,700 115 3 10

* All plates of length a = 5 inches.
¥ Value at ¢ = 10% when ¢ >/ 10%.
¥ Number of haifwaves. /
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THEORETICAL AND EXPERIMENTAL MODES

Specimen

SAC-3
SAC-2
SAC-1

LAC-1
LAC-2
LAC-3

LAC-4
LAC-S

SAC-4

4CSC-3
4CSC-2
4CSC-1

where

Qu = az[(mw)‘ + 8(ym) ¥ (mm)? + 4(7#)“

Table 6.2

RY = 2mm2ft - a2p(mm?] -

Sw ™ 2 (mw)?

which determines the amplification factor of the initial deflection imperfections

A7) = (e

R}nf/Qm

Preferred Mode Numbers
14 6 14
14 9 14
14 11 14
10 5 9
11 8 9
1 9 9
9 3 9
9 4 9
12 4 14
7 5 6
8 6 7
8 7 8

Formulas Experiment

19
19
16

13
12
14

14
10

13

8
10
10

n

If we choose the preferred mode number as the value of m that maximizes
the ratio R2/Q,,, we obtain formulas (6.4.25), (6.4.26), and (6.4.27) according to
relative magnitudes of properties occurring in the formulas. Thus we obtain the
same buckling modes as those for a large class of dynamic cases, that is, for cases
where Q,, > > 2R, the Q,, and R2 being (6.4.18) and (6.4.17).
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Amplification function, 11
bar, elastic impact, 25
bar, plastic impact, 65-67
plate, plastic impact, 333, 358-361, 365
ring, elastic, 130-132
ring, plastic, 66
shell, elastic axial impact, 287-289
shell, plastic axial impact, 318-320
shell, radial plastic impulse, 218-220, 247-249
shell, transient radial pressure, 180
Amplification, stress, 119-127
Asymptotic solutions, shell, 220, 249
Autoparametric instability, 114
Autoparametric vibrations, 116
Axial plastic strains, shell, 209
Axial wave front, 48

Bar buckling, elastic impact
aluminum experiments, 44
amplification function, 25
dynamic equations, 20, 23
eccentric impact, 27-33
equations of motion, 13
experiment, 4, 44, 45, 49, 53, 57
mean wavelength, 38
preferred mode, 26
static buckling, 15
static wavelength, 22

Bar buckling, plastic impact
amplification function, 65-67
buckling times, 72
equation of motion, 63
experimental wavelengths, 70-71
experiments, 57-61, 67.72
preferred mode, 65
shapc imperfection, 65
velocity perturbations, 64

Bending waves, 48

Buckling modes, 11, 21, 83, 85

Buckling parameter, 115

Compatibility, 169
Critical collapse velocity, 260-278
Critical impact velocity
plate, plastic, 335, 359-363, 366
shell, elastic axial, 298
shell, plastic axial, 321
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INDEX

Critical impulse for buckling

bar, 31

ring, elastic, 133-135

ring, elastic-plastic, 149-151

ring, plastic flow, 143-149

shell, plastic flow, 230, 234-236, 251
Critical load for buckling

eccentric impact, 30

random imperfections, 40

shell, axial elastic loads, 297-299, 307-308
Critical load-impulse for buckling

bar, 33, 56

shell, radial pressure, 182-189

Differential displacment, middle
surface, 107
Directional moment, 9, 212-214
plate, impact, 331, 354, 364
shell, axial impact, 314
shell, radial impulse, 223-233, 253
Donneil equations, 159-171

Eccentric impact, 27-33
Eccentric load, 18
Energy absorption, axial collapse, 342-343
Energy transfer to buckling, 117-124
complete traasfer, 119
partial, maximum buckling, 123
Equations of motion
bar, elastic impact, 13
bar, plastic impact, 61-63
plate, plastic impact, 331, 354, 364
ring, shell, elastic radial impuise, 105-111
ring, shell, elastic-plastic radial, 138-140
shell, elastic; axial load, 281-284
shell, elastic, radial pressure, 171-173, 17§-179
shell, plastic axial impact, 314
shell, plastic radial impulse, 80. 138, 215, 245
Experiments
bar, elastic impact, 44, 53
bar, nlastic impact, 57, 68
ogive sheli, axial collapse, 33°
plate, impact, 368-371
rubber strips, 49
shell, cosine radial impuise, 152
shell, elastic axial impact, 293-297
shell, plastic axial impact, 323-329
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shell, radial impulse, 77, 93, 146, 236-239,

253-260
shell, tadial pressure puises, 189-200
shell, static radiai pressure, 194
streak caniera, 45

plate, impact, 3¢9

ring, elastic-plastic, 140-151
ting. rigid-plastic, 78

shell, axial impact, 308
<hell, radiat imputse, 203

Plasticity, 203.205
Fourier series versus transform solutions Plastic material propetties, 68, 97.98, 136-138
series, 16 Plate buckling, plastic

transform, 64
Higher order equations, need for, 120

Impact
par, elastic, 44 .
bar, plastic, 57
elastic stress wave, 43
plate, 349
shell, axial elastic, 281
shell, axial plastic, 308
[mperfections
equivalent, 40
equivalent measured, afuminum bar, 56
tocal velocity, 87-91
plate, impact, 350
random mathematical, 33
random, measured buckling, 37, 50, 53
random phase, 92
rigid-rod cnlumn model, 300-304
sensitivity (o, shelf, axial load, 285
shape versus velocity, 141
shell, axial impact, 2990, 316
shell, radial impulse, 233, 252
static buckling, 18

Mathieu disgram, 113, 114, 128
Mathieu equation, 112
Mean wavelength
bar, 38, 50, 53
shell, axial elastic impact, 292-293
Middle surface strain, 107
Maodal versus asymptotic solutions
asymptotic, 220, 249
modal. 216, 245, 316, 332, 356, 364
Mante Catlo buckie statistics, k¥l

amplification functions, 333, 358-361, 365
critical impact velocity, 335, 359363, 366
directional moment, 363, 366

equation of motion, 331, 354, 364
experiments, 368-371

flexure, 350-354

imperfections, 350

modal solution, 332, 356-358, 364
preferred mode, 334, 359-363, 366

static buckling, 369, 371

strain hardening moment, 363, 366
uniaxial compression, 331, 354-356

Plate theory

bending, 161-166
in-plane stresses, 166-168
plastic flexure, 349

Preferred mode

bar, elastic, 26

bar, plastic, 65-67

plate, impact, 334, 359-363, 366

ring, elastic, 132

shell, elastic axis! impact, 287-293

shell, plastic axial impact, n

shell, plastic radial impulse, 92, 228, 251

Pressure puises, 178
Pulse buckling, 1-3

elastic ring, onset, 128

Random imperfections

bar, 33

critical load with, 40
mathematical definition, 33

noise analogy, 33

shell, axist elastic impact, 290-293

Rubber strip experiments, H

Shatlow shell theory, 160
Shape versus velocity imperfections, 14\
Shell Suckling, axisl collapse
collapse force, average, 343
collapse force, hoop and bending parts, 344
energy absorption, 342-343

Noise, stationary. white, 34, 38
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Ogive shell, axial impact, 339

Parametric loading, 1
Parametric resonance, 1
Perturbed motion, 210-212, 244, 312.314

experiments, 336-340
ogive experiment, 339.340
theoretical collapse pattern, 341-342

Plastic flow buckling Shell buckling, axial elastic impact
bar, 57 amptification function, 288-290
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buckling pattern, dynamic, 292, 293, 298
buckling patterns, static, 234-285
critical impact load for buckling, 297-279, 307
experiments, impact, 293-297
experiment, static, 285-287
equations of motion, 282-284, 288
random imperfections, 290-293
static buckling, 284.287
step loads, simple nonlincar model, 299-304
Shell buckling, axia} plastic impact
amplification functions, 318-320
critical impact velocity, 32}
directional moment, 322
equation of motion, 314
expetiments, 323-329
imperfections, 316
modal sofution, 316-318
perturbed motion, 312-314
preferred mode, 321
static buckling, 329-331
strain hardening moment, 322
tube compression, 308
unperturbed motion, 310
Shell buckling, elastic-plastic radial impulss
critical impulse, constant hardening modulus,
142-143
critical impulse, cos@ impulse distribution,
152-155
critical impulse, decreasing hardening modulus,
143-149
critical impulse, elastic-plastic flow, 149-15°
equations of motion, 138-140
equivalent imperfections, 148
experiments, 145-148
imperfections, shape versus velocity, 141-142
rigid-plastic flow buckling, 140-141
strain hardening properties, 136-138
strain-rate reversal effects, 156-157
Shell buckling, elastic radial impulse
amplification function, 130-132
autoparametric vibration, 114-118
buckling parameter, 115-116
critical velocity for buckling, 132-135
energy transfer to buckling, 118-12i
equations of motion, 105-111
Mathieu diagram 113-114, 128
Mathieu equation, 112
middle surface strain, 107-109
onset of pulse buckling, 120-127
preferred mode, 132
pulse buckling, 128-135
small initial velocity, 112-119
strain energy, 109
stress amplication, 118-127
Shell buckling, plastic radial impulse
amplification functions, 218-220, 247-249
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asymptotic solutions, 220, 249
axial strains, 209
critical collapse velocity, 260-278
critical impulse, 230, 234.236, 251
directional moment, 212-214, 223-233, 253
equations of motion, 80-81, 215, 245
experimental wavelengths, 99-100
experiments, 93-102, 236-239, 253.260
imperfections, 233, 252
fength effect, 205
modal solution, 216-218, 245-247
perturhed motion, 210-212, 244
plasticity, 203-205
preferred mode, 92, 228, 251
random velocity perturbations, 91-92
strain hardening moment, 79, 221, 226-233,
262
strain-rate reversal, 85-R6
unperturbed motion, 206-209, 242-244
velocity perturbations, ¥2-85, 87.92
viscoplasticity, 240-242
viscoplastic moment, 241, 253, 267
Shell buckling, transient radial pressure
amplification functions, 180
approach, 158-159
compatibility, 169
critical pressure-impulse curves for buckling,
182-189
Donnell equations of motion. 159-171
experiments, 189-200
modal equations of motion, 179
plate theory, bending, 161.166
plate theory. in-plane stresses, 166-168
prassure pulses, 178
static buckling, 171-177, 192, 194
stretching from flexure motion, 168-170
Southweil plot, 17
Static buckling
bar, 15-19
dynamic derivation, 22
plate, 369-371
shell, axial slastic load, 284-287
shell, axial plastic load, 329-331
shell, radial pressure, 171-177, 192, 194
Stationary noise, 34
Statistics, measured waves, 37, 50, 53
Step load, axial, shell. 299-304
Strain hardening moment
plate, impact, 363, 366
shell, axial impact, 322
shell, radial impulse, 68, 221, 226-233, 262
Strain hardening parameters, 138
Strain-rate reversal, 85, 157
Streak camera experiments, 45
Stress buildup, autoparametric oscillations, 117,
124
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Stress-strain curves, 68, 98, 137
Stress-strain equation, 136, 369
Stress-strain-rate equation, 256-257
Suetching from flexurs, 163-170

Tube axial compression, 308

Uniaxial plate compression, 331, 354-356
Unperturbed motion

shell, axial impact, 310

shell, radial impulse, 206-209, 242-244

Velocity perturbations, 64
Viscoplasticity, 240-242
Viscoplastic moment, 241, 253, 267

Wavelengths, experimental

bar, elastic impact, 37

ber, plastic impact, 70-71

plate, impact, 370

rubber strips, elastic impact, 51

shell, elastic axial impact, 296-298

shell, plastic axial impact, 326

shell, plastic radial impulse, 95-100, 146, 239
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shell, transient radial pressure, 193-199

White noise, 34
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